【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a0)中的x與y的部分對(duì)應(yīng)值如表:下列結(jié)論:①ac<0;②當(dāng)x1時(shí),y的值隨x的增大而減小;3是方程ax2+(b﹣1)x+c=0的一個(gè)根;當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+x>0.其中正確的序號(hào)為_____

x

﹣1

0

1

3

y

﹣1

3

5

3

【答案】①③④

【解析】利用待定系數(shù)法求出二次函數(shù)解析式為y=﹣x2+3x+3,可得ac=﹣1×3=﹣3<0,故①正確;

對(duì)稱軸為直線x=﹣,

所以,當(dāng)x>時(shí),y的值隨x值的增大而減小,故②錯(cuò)誤;

方程為﹣x2+2x+3=0,

整理得,x2﹣2x﹣3=0,

解得x1=﹣1,x2=3,

所以,3是方程ax2+(b﹣1)x+c=0的一個(gè)根,正確,故③正確;

﹣1<x<3時(shí),ax2+(b﹣1)x+c>0正確,故④正確;

綜上所述,結(jié)論正確的是①③④.

故答案為:①③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).

(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;

(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸于點(diǎn)A,交直線x=6于點(diǎn)B.

1填空:拋物線的對(duì)稱軸為x=_________,點(diǎn)B的縱坐標(biāo)為__________(用含a的代數(shù)式表示);

2若直線ABx軸正方向所夾的角為45°時(shí),拋物線在x軸上方,求的值;

3記拋物線在A、B之間的部分為圖像G(包含AB兩點(diǎn)),若對(duì)于圖像G上任意一點(diǎn)總有≤3,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從A地到B地的公路需經(jīng)過(guò)C地,圖中AC=10千米,∠CAB=25°,CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.

(1)求改直的公路AB的長(zhǎng);

(2)問(wèn)公路改直后比原來(lái)縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,直線x軸、y軸分別交于點(diǎn)A、C兩點(diǎn),點(diǎn)B的橫坐標(biāo)為2.

圖1 圖2

(1)求A、C兩點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;

(2)點(diǎn)D是直線AC上方拋物線上任意一點(diǎn),P為線段AC上一點(diǎn),且SPCD=2SPAD ,求點(diǎn)P的坐標(biāo);

(3)如圖2,另有一條直線y=-x與直線AC交于點(diǎn)MN為線段OA上一點(diǎn),∠AMN=∠AOM.點(diǎn)Qx軸負(fù)半軸上一點(diǎn),且點(diǎn)Q到直線MN和直線MO的距離相等,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,A=30°,BD是∠ABC的平分線,CD=5cm,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x-3x軸于點(diǎn)B,交y軸于點(diǎn)C,拋物線經(jīng)過(guò)點(diǎn)A(-1,0),B,C三點(diǎn),點(diǎn)Fy軸負(fù)半軸上,OF=OA.

(1)求拋物線的解析式;

(2)在第一象限的拋物線上存在一點(diǎn)P,滿足SABC=SPBC,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)點(diǎn)D是直線BC的下方的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)D點(diǎn)作DEy軸,交直線BC于點(diǎn)E,①當(dāng)四邊形CDEF為平行四邊形時(shí),求D點(diǎn)的坐標(biāo);

②是否存在點(diǎn)D,使CEDF互相垂直平分?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=3cm,BC=4cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C移動(dòng),同時(shí)動(dòng)點(diǎn)QC出發(fā)以1cm/s的速度向點(diǎn)A移動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為t.

1t為何值時(shí),△CPQ的面積等于△ABC面積的?

(2)運(yùn)動(dòng)幾秒時(shí),△CPQ與△CBA相似?

(3)在運(yùn)動(dòng)過(guò)程中,PQ的長(zhǎng)度能否為1cm?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小林在某商店購(gòu)買商品A、B若干次(每次A、B兩種商品都購(gòu)買),其中第一、二兩次購(gòu)買時(shí),均按標(biāo)價(jià)購(gòu)買;第三次購(gòu)買時(shí),商品A、B同時(shí)打折.三次購(gòu)買商品A、B的數(shù)量和費(fèi)用如表所示.

購(gòu)買商品A的數(shù)量/個(gè)

購(gòu)買商品B的數(shù)量/個(gè)

購(gòu)買總費(fèi)用/

第一次購(gòu)物

6

5

980

第二次購(gòu)物

3

7

940

第三次購(gòu)物

9

8

912

(1)求商品A、B的標(biāo)價(jià);

(2)若商品A、B的折扣相同,問(wèn)商店是打幾折出售這兩種商品的?

(3)在(2)的條件下,若小林第四次購(gòu)物共花去了960元,則小林有哪幾種購(gòu)買方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案