【題目】甲、乙兩人玩錘子、石頭、剪子、布游戲,他們在不透明的袋子中放入形狀、大小均相同的15張卡片,其中寫有錘子、石頭、剪子、的卡片張數(shù)分別為2,3,4,6.兩人各隨機摸出一張卡片(先摸者不放回)來比勝負,并約定:錘子石頭剪子,石頭剪子,剪子,錘子石頭,同種卡片不分勝負.

1)若甲先摸,則他摸出石頭的概率是多少?

2)若甲先摸出了石頭,則乙獲勝的概率是多少?

3)若甲先摸,則他先摸出哪種卡片獲勝的可能性最大?

【答案】1

2

3)甲先摸出錘子獲勝的可能性最大.

【解析】

1)當問題情境是從若干個元素中抽取一個元素(即一次性操作問題)時,可以直接應(yīng)用公式m表示事件A發(fā)生可能出現(xiàn)的結(jié)果數(shù),n表示一次實驗中所有等可能出現(xiàn)的結(jié)果數(shù));(2)因為甲先摸出了石頭后無放回,所以袋子中還有14張卡片;(3)甲先摸,摸到錘子、石頭剪子、的可能性都有,所以要分類討論.

1)若甲先摸,共有15張卡片可供選擇,其中寫有石頭的卡片共3張,

故甲摸出石頭的概率為

2)若甲先摸且摸出石頭,則可供乙選擇的卡片還有14張,其中乙只有摸出卡片錘子才能獲勝,這樣的卡片共有8張,故乙獲勝的概率為

3)若甲先摸,則錘子、石頭、剪子、四種卡片都有可能被摸出.

若甲先摸出錘子,則甲獲勝(即乙摸出石頭剪子)的概率為;

若甲先摸出石頭,則甲獲勝(即乙摸出剪子)的概率為

若甲先摸出剪子,則甲獲勝(即乙摸出)的概率為;

若甲先摸出,則甲獲勝(即乙摸出錘子石頭)的概率為

故甲先摸出錘子獲勝的可能性最大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2mA處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y=a(xk)2+h.已知球與O點的水平距離為6m時,達到最高2.6m,球網(wǎng)與O點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是( )

A. 球不會過網(wǎng) B. 球會過球網(wǎng)但不會出界

C. 球會過球網(wǎng)并會出界 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6相交于A(, )和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸,交拋物線于點C.

(1)求拋物線的表達式;

(2)是否存在這樣的點P,使線段PC的長有最大值?若存在,求出這個最大值,若不存在,請說明理由;

(3)當△PAC為直角三角形時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=3,E為對角線BD上一個動點,以E為直角頂點,AE為直角邊作等腰RtAEF,A、E、F按逆時針排列當點E從點B運動到點D時,點F的運動路徑長為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖將矩形ABCD置于平面直角坐標系中,其中AD邊在x軸上, 直線MN: y=x8沿x軸的負方向以每秒2個單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t, mt的函數(shù)圖象如圖2所示.

(1)AB=6

①點A的坐標為_____________,矩形ABCD的面積為____________.

②求a, b的值;

(2)AB=4,在平移過程中,求直線MN掃過矩形ABCD的面積 S t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.

1)以下四邊形中,是勾股四邊形的為 .(填寫序號即可)

①矩形;②有一個角為直角的任意凸四邊形;③有一個角為60°的菱形.

2)如圖,將ABC繞頂點B按順時針方向旋轉(zhuǎn)60°得到DBE,DCB=30°,連接AD,DC,CE

①求證:BCE是等邊三角形;

②求證:四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ykx+2x軸、y軸分別相交于點A、點B,∠BAO30°,若將AOB沿直錢CD折疊,使點A與點B重合,折痕CDx軸交于點C,與AB交于點D

1)求k的值;

2)求點C的坐標;

3)求直線CD的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空,如圖所示.

1)∵ (已知),∴__________________ ______

2)∵ (已知),∴________________________

3)∵_________(已知),∴______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米寬為5分米,深為2分米的長方體后得到一個如圖所示的幾何體一只螞蟻要從該幾何體的頂點A處,沿著幾何體的表面到幾何體上和A相對的頂點B處吃食物,那么它需要爬行的最短路徑的長是 分米

查看答案和解析>>

同步練習冊答案