【題目】如圖,已知雙曲線y=(k<0)經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標(biāo)為(﹣6,4),則△AOC的面積為( )
A. 12 B. 9 C. 6 D. 4
【答案】B
【解析】試題分析:△AOC的面積=△AOB的面積-△BOC的面積,由點A的坐標(biāo)為(-6,4),根據(jù)三角形的面積公式,可知△AOB的面積=12,由反比例函數(shù)的比例系數(shù)k的幾何意義,可知△BOC的面積=|k|.只需根據(jù)OA的中點D的坐標(biāo),求出k值即可.
試題解析:∵OA的中點是D,點A的坐標(biāo)為(-6,4),
∴D(-3,2),
∵雙曲線y=經(jīng)過點D,
∴k=-3×2=-6,
∴△BOC的面積=|k|=3.
又∵△AOB的面積=×6×4=12,
∴△AOC的面積=△AOB的面積-△BOC的面積=12-3=9.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,則DM的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)期即將結(jié)束,為了表彰優(yōu)秀,班主任王老師用W元錢購買獎品。若以2支鋼筆和3本筆記本為一份獎品,則可買60份獎品;若以2支鋼筆和6本筆記本為一份獎品,則可以買40份獎品。設(shè)鋼筆單價為x元/支,筆記本單價為y元/本。
請用y的代數(shù)式表示x.
若用這W元錢全部購買筆記本,總共可以買幾本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】來自中國、美國、立陶宛、加拿大的四國青年男籃巔峰爭霸賽于2014年3月25日-27日在我縣體育館舉行。小明來到體育館看球賽,進場時,發(fā)現(xiàn)門票還在家里,此時離比賽開始還有25分鐘,于是立即步行回家取票.同時,他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父、子倆送票、取票過程中,離體育館的路程S(米)與所用時間t(分鐘)之間的圖象,結(jié)合圖象解答下列問題(假設(shè)騎自行車和步行的速度始終保持不變):
(1)從圖中可知,小明家離體育館 米,父子倆在出發(fā)后 分鐘相遇.
(2)求出父親與小明相遇時距離體育館還有多遠?
(3)小明能否在比賽開始之前趕回體育館?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+4的圖象與反比例y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標(biāo);
(2)在x軸上找一點P,使PA+PB的值最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DA∶AB=1∶2.
(1)求∠CDB的度數(shù);
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為兩條相互平行的直線,之間一點,和的角平分線相交于,.
(1)求證:;
(2)連結(jié)當(dāng)且時,求的度數(shù);
(3)若時,將線段沿直線 方向平移,記平移后的線段為(,分別對應(yīng)、當(dāng)時,請直接寫出的度數(shù)_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=8,矩形內(nèi)一動點P使得S△PAD=S矩形ABCD,則點P到點A、D的距離之和PA+PD的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購買了一批、型芯片,其中型芯片的單價比型芯片的單價少9元,已知該公司用3120元購買型芯片的條數(shù)與用4200元購買型芯片的條數(shù)相等.
(1)求該公司購買的、型芯片的單價各是多少元?
(2)若兩種芯片共購買了200條,且購買的總費用為6280元,求購買了多少條型芯片?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com