【題目】如圖,在ABC中,點D為BC邊上的一點,且AD=AB=5, AD⊥AB于點A,過點D作DE⊥AD,DE交AC于點E,若DE=2,則ADC的面積為(

A.B.4C.D.

【答案】D

【解析】

根據(jù)題意得出ABDE,得△CED∽△CAB,利用對應(yīng)邊成比例求CD長度,再根據(jù)等腰直角三角形求出底邊上的高,利用面積公式計算即可.

解:如圖,過AAFBC,垂足為F,

ADAB,

∴∠BAD =90°

RtABD中,由勾股定理得,

BD= ,

AFBD,

AF= .

ADAB,DEAD,

∴∠BAD=ADE=90°,

ABDE,

∴∠CDE=B, CED=CAB,

∴△CDE∽△CBA,

,

,

CD= ,

SADC= .

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】最美女教師張麗莉,為搶救兩名學(xué)生,以致雙腿高位截肢,社會各界紛紛為她捐款,我市某中學(xué)九年級一班全體同學(xué)參加了捐款活動,該班同學(xué)捐款情況的部分統(tǒng)計圖如圖所示:

1)求該班的總?cè)藬?shù);

2)將條形圖補充完整,并寫出捐款總額的眾數(shù);

3)該班平均每人捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在宣傳民族團結(jié)活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.

請結(jié)合圖中所給信息,解答下列問題:

(1)本次調(diào)查的學(xué)生共有_____人;

(2)補全條形統(tǒng)計圖;

(3)該校共有1200名學(xué)生,請估計選擇唱歌的學(xué)生有多少人?

(4)七年一班在最喜歡器樂的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機選出兩名同學(xué)參加學(xué)校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=2,AB=,以點A為圓心,AD為半徑的圓與BC相切于點E,交AB于點F

(1)求ABE的大小及的長度;

(2)在BE的延長線上取一點G,使得上的一個動點P到點G的最短距離為,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(0,3),∠ABO30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為(  )

A. (,)B. (2,)C. ()D. (,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 了解我市市民知曉禮讓行人交通新規(guī)的情況,適合全面調(diào)查

B. 甲、乙兩人跳遠(yuǎn)成績的方差分別為,,說明乙的跳遠(yuǎn)成績比甲穩(wěn)定

C. 一組數(shù)據(jù)2,2,34的眾數(shù)是2,中位數(shù)是2.5

D. 可能性是1%的事件在一次試驗中一定不會發(fā)生

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南岸區(qū)正全力爭創(chuàng)全國衛(wèi)生城區(qū)和全國文明城區(qū)(簡稱兩城同創(chuàng)).某街道積極響應(yīng)兩城同創(chuàng)活動,投入一定資金綠化一塊閑置空地,購買了甲、乙兩種樹木共72棵,甲種樹木單價是乙種樹木單價的,且乙種樹木每棵80元,共用去資金6160元.

(1)求甲、乙兩種樹木各購買了多少棵?

2)經(jīng)過一段時間后,種植的這批樹木成活率高,綠化效果好.該街道決定再購買一批這兩種樹木綠化另一塊閑置空地,兩種樹木的購買數(shù)量均與第一批相同,購買時發(fā)現(xiàn)甲種樹木單價上漲了a%,乙種樹木單價下降了,且總費用為6804元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),為坐標(biāo)原點,點為直線上一動點,過軸,交軸于點(點在原點右側(cè)),交雙曲線于點,且,則當(dāng)存在時,其面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,平行四邊形ACDE的一邊在直徑AB上,點E在⊙O上.

1)如圖1,當(dāng)點D在⊙O上時,請你僅用無刻度的直尺在AB上取點P,使DPABP;

2)如圖2,當(dāng)點D在⊙O內(nèi)時,請你僅用無刻度的直尺在AB上取點Q,使EQABQ

查看答案和解析>>

同步練習(xí)冊答案