【題目】如圖,在正方形ABCD中,AB=6,EBC邊的中點(diǎn),FCD邊上的一點(diǎn),且DF=2,若M、N分別是線(xiàn)段AD、AE上的動(dòng)點(diǎn),則MN+MF的最小值為   

【答案】

【解析】分析:作點(diǎn)F關(guān)于AD的對(duì)稱(chēng)點(diǎn)G,過(guò)GGN⊥AEN,交ADM,則GN的長(zhǎng)度等于MN+MF的最小值,根據(jù)對(duì)稱(chēng)的性質(zhì)得到∠DMF=∠GMD,根據(jù)余角的性質(zhì)得到∠FMD=∠BAE=∠AMN,根據(jù)相似三角形的性質(zhì)和勾股定理即可得到結(jié)論.

詳解:作點(diǎn)F關(guān)于AD的對(duì)稱(chēng)點(diǎn)G,過(guò)GGN⊥AEN,交ADM ,

GN的長(zhǎng)度等于MN+MF的最小值,

∵△DGM≌△DFM, ∴∠DMF=∠GMD , ∵∠GMD=∠AMN ,

∵∠AMN+∠MAN=∠MAN+∠BAE=90 ,∴∠FMD=∠BAE=∠AMN ,

∴△ABE∽△DMF∽△AMN , , AB=6, BE=3,

DF=2, DM=4, AM=2, , MN=,

GM=,

GN=GM+MN=MN+MF=, MN+MF 的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小劉對(duì)本班同學(xué)的業(yè)余興趣愛(ài)好進(jìn)行了一次調(diào)查,她根據(jù)采集到的數(shù)據(jù),繪制了下面的圖1和圖2.

請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)在圖1中,將書(shū)畫(huà)部分的圖形補(bǔ)充完整;

(2)在圖2中,求出球類(lèi)部分所對(duì)應(yīng)的圓心角的度數(shù),并分別寫(xiě)出愛(ài)好音樂(lè)”、“書(shū)畫(huà)”、“其它的人數(shù)占本班學(xué)生數(shù)的百分?jǐn)?shù);

(3)觀察圖1和圖2,你能得出哪些結(jié)論(只要寫(xiě)出一條結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問(wèn)卷調(diào)查的學(xué)生只能從以下六個(gè)種類(lèi)中選擇一類(lèi)),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

種類(lèi)

A

B

C

D

E

F

上學(xué)方式

電動(dòng)車(chē)

私家車(chē)

公共交通

自行車(chē)

步行

其他

某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計(jì)圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計(jì)圖

根據(jù)以上信息,回答下列問(wèn)題:

(1)參與本次問(wèn)卷調(diào)查的學(xué)生共有____人,其中選擇B類(lèi)的人數(shù)有____人.

(2)在扇形統(tǒng)計(jì)圖中,求E類(lèi)對(duì)應(yīng)的扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若將A、C、D、E這四類(lèi)上學(xué)方式視為綠色出行,請(qǐng)估計(jì)該校每天綠色出行的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)O到ABC的兩邊AB、AC所在直線(xiàn)的距離相等,且OB=OC.

(1)如圖1,若點(diǎn)O在BC上,求證:AB=AC;

(2)如圖2,若點(diǎn)O在ABC的內(nèi)部,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已知點(diǎn)的坐標(biāo),點(diǎn)位置如圖所示,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)。

1)在圖中描出點(diǎn);寫(xiě)出圖中點(diǎn)的坐標(biāo):______________,點(diǎn)的坐標(biāo):_______________;

2)畫(huà)出關(guān)于軸的對(duì)稱(chēng)圖形,并求出四邊形的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 ,在平面直角坐標(biāo)系中,直線(xiàn)AB x軸,線(xiàn)段AB y 軸交于點(diǎn)M ,已知點(diǎn) A的坐標(biāo)是(-2,3), BM4,點(diǎn)C 與點(diǎn) B 關(guān)于 x 軸對(duì)稱(chēng).

1)在圖中描出點(diǎn)C ,并直接寫(xiě)出點(diǎn) B 和點(diǎn)C 的坐標(biāo):B ,C

2)聯(lián)結(jié) AC 、BC ,AC x 軸交于點(diǎn) D ,試判斷ABC 的形狀,并直接寫(xiě)出點(diǎn) D的坐標(biāo);

3)在坐標(biāo)平面內(nèi), x 軸的下方,是否存在這樣的點(diǎn) P ,使得ACP 是等腰直角三角形?如果存在,直接寫(xiě)出點(diǎn)P 的坐標(biāo);如果不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(4,1),C(4,3),反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,點(diǎn)P是一次函數(shù)y=mx+3﹣4m(m≠0)的圖象與該反比例函數(shù)圖象的一個(gè)公共點(diǎn);

(1)求反比例函數(shù)的解析式;

(2)通過(guò)計(jì)算說(shuō)明一次函數(shù)y=mx+3﹣4m的圖象一定過(guò)點(diǎn)C;

(3)對(duì)于一次函數(shù)y=mx+3﹣4m(m≠0),當(dāng)y隨x的增大而增大時(shí),確定點(diǎn)P的橫坐標(biāo)的取值范圍,(不必寫(xiě)過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,Am°,ABC和∠ACD的平分線(xiàn)相交于點(diǎn)A1,得∠A1;A1BC和∠A1CD的平分線(xiàn)相交于點(diǎn)A2,得∠A2;…;A2018BC和∠A2018CD的平分線(xiàn)交于點(diǎn)A2019,則∠A2019________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛貨車(chē)從甲地出發(fā)以50 km/h的速度勻速駛往乙地,行駛1 h后,一輛轎車(chē)從乙地出發(fā)沿同一條路勻速駛往甲地轎車(chē)行駛0.8 h后兩車(chē)相遇圖中折線(xiàn)ABC表示兩車(chē)之間的距離ykm)與貨車(chē)行駛時(shí)間xh)的函數(shù)關(guān)系

1)甲乙兩地之間的距離是__________ km,轎車(chē)的速度是_________ km/h;

2)求線(xiàn)段BC所表示的函數(shù)表達(dá)式

3)在圖中畫(huà)出貨車(chē)與轎車(chē)相遇后的ykm)與xh)的函數(shù)圖像

查看答案和解析>>

同步練習(xí)冊(cè)答案