【題目】(1)如圖①,△ABC是銳角三角形,高BD,CE相交于點H.找出∠BHC和∠A之間存在何種等量關系;
(2)如圖②,若△ABC是鈍角三角形,∠A>90°,高BD,CE所在的直線相交于點H,把圖②補充完整,并指出此時(1)中的等量關系是否仍然成立?
【答案】 (1)∠A+∠BHC=180° (2)仍然成立
【解析】
(1)根據對頂角的性質,可得∠BHC與∠EHD的關系,根據四邊形的內角和定理,可得答案;
(2)根據對頂角的性質,可得∠BHC與∠EHD的關系,根據四邊形的內角和定理,可得答案.
(1)由∠BHC與∠EHD是對頂角,得:
∠BHC=∠EHD,
由高BD、CE相交于點H,得:
∠ADH=∠AEH=90°,
由四邊形內角和定理,得:
∠A+∠AEH+∠EHD+∠HDA=360°,
∠A+∠EHD=360°-∠AEH-∠HDA=360°-90°-90°=180°,
∴∠BHC+∠A=180°;
(2)由∠BHC與∠EHD是對頂角,得:
∠BHC=∠EHD,
由高BD、CE相交于點H,得:
∠ADH=∠AEH=90°,
由四邊形內角和定理,得:
∠H+∠AEH+∠EHD+∠HDA=360°,
∠H+∠DAE=360°-∠AEH-∠HDA=360°-90°-90°=180°,
∴∠BHC+∠BAC=180°.
科目:初中數學 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板如圖所示放置,圖是由它抽象出的幾何圖形,B,C,E在同一條直線上,聯(lián)結DC,
請找出圖中的全等三角形,并給予說明說明:結論中不得含有未標識的字母;
試說明:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】云南省是我國花卉產業(yè)大省,一年四季都有大量鮮花銷往全國各地,花卉產業(yè)已成為我省許多地區(qū)經濟發(fā)展的重要項目.近年來某鄉(xiāng)的花卉產值不斷增加,2003年花卉的產值是640萬元,2005年產值達到1000萬元.
(1)求2004年、2005年花卉產值的年平均增長率是多少?
(2)若2006年花卉產值繼續(xù)穩(wěn)步增長(即年增長率與前兩年的年增長率相同),那么請你估計2006年這個鄉(xiāng)的花卉產值將達到多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l上有一點P1(2,1),將點P1先向右平移1個單位,再向上平移2個單位得到像點P2,點P2恰好在直線l上.
(1)求直線l所表示的一次函數的表達式;
(2)若將點P2先向右平移3個單位,再向上平移6個單位得到像點P3.請判斷點P3是否在直線l上,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,E,F(xiàn)分別是AB,AD的中點,DE,BF相交于點G,連接BD,CG.有下列結論:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD= AB2
其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點D、E.
(1)若AC=12,BC=15,求△ABD的周長;
(2)若∠B=20°,求∠BAD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.
(1)請找出截面的圓心;(不寫畫法,保留作圖痕跡.)
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com