【題目】如圖,已知于,于,要計(jì)算,兩地的距離,甲、乙、丙、丁四組同學(xué)分別測(cè)量了部分線段的長(zhǎng)度和角的度數(shù),得到以下四組數(shù)據(jù):甲:,;乙:,,;丙:和;。,,.其中能求得,兩地距離的有( )
A. 1組 B. 2組 C. 3組 D. 4組
【答案】C
【解析】
分別根據(jù)直角三角形的性質(zhì)及相似三角形的判定與性質(zhì)對(duì)四組數(shù)據(jù)進(jìn)行逐一分析即可.
甲:∵已知AC、∠ACB,∴AB=ACtan∠ACB,故甲組符合題意;
乙組:∵AB⊥AE于A,EF⊥AE于E,
∴AE∥EF,
∴∠A=∠E=90°,
∵∠ADB=∠EDF,
∴△DEF∽△DAB,
∴,
∴AB=,故乙組符合題意;
丙:∵∠E=90°,∴∠EDF=90°-∠DFE,
∵∠ADB=∠EDF,△ADB是直角三角形,
∴AB=ADtan∠ADB,故丙組正確;
丁組: CD,DE,∠ACB無(wú)法求得AB的長(zhǎng),
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·貴港)如圖所示,正方形OEFG和正方形ABCD是位似圖形,點(diǎn)F的坐標(biāo)
為(-1,1),點(diǎn)C的坐標(biāo)為(-4,2),則這兩個(gè)正方形位似中心的坐標(biāo)是 _ ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,為等邊三角形,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與、重合).以為邊作菱形,使,連接.
如圖,當(dāng)點(diǎn)在邊上時(shí),
①求證:;②請(qǐng)直接判斷結(jié)論是否成立;
如圖,當(dāng)點(diǎn)在邊的延長(zhǎng)線上時(shí),其他條件不變,結(jié)論是否成立?請(qǐng)寫出、、之間存在的數(shù)量關(guān)系,并寫出證明過(guò)程;
如圖,當(dāng)點(diǎn)在邊的延長(zhǎng)線上時(shí),且點(diǎn)、分別在直線的異側(cè),其他條件不變,請(qǐng)補(bǔ)全圖形,并直接寫出、、之間存在的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BA=BC,BD是三角形的角平分線,DE∥BC交AB于E,下列結(jié)論:①∠1=∠3;②;③。正確的有__________。(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】興趣小組的同學(xué)要測(cè)量樹的高度.在陽(yáng)光下,一名同學(xué)測(cè)得一根長(zhǎng)為米的竹竿的影長(zhǎng)為米,同時(shí)另一名同學(xué)測(cè)量樹的高度時(shí),發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級(jí)臺(tái)階上,測(cè)得此影子長(zhǎng)為米,一級(jí)臺(tái)階高為米,如圖所示,若此時(shí)落在地面上的影長(zhǎng)為米,則樹高為( )
A. 11.5米 B. 11.75米 C. 11.8米 D. 12.25米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】測(cè)量物體高度
小明想測(cè)量一棵樹的高度,在陽(yáng)光下,小明測(cè)得一根長(zhǎng)為米的竹竿的影長(zhǎng)為米.同時(shí)另一名同學(xué)測(cè)量一棵樹的高度時(shí),發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),其影長(zhǎng)為米,落在地面上的影長(zhǎng)為米,則樹高為多少米.
小明在某一時(shí)刻測(cè)得的桿子在陽(yáng)光下的影子長(zhǎng)為,他想測(cè)量電線桿的高度,但其影子恰好落在土坡的坡面和地面上,量得,,與地面成.
求電線桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,矩形ABCD中,AB=12cm,AD=5cm,E是DC上一點(diǎn)(點(diǎn)E不與D、C重合)連接AE,以AE所在的直線為折痕,折疊紙片,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D′,點(diǎn)F為線段BC上一點(diǎn),連接EF,以EF所在的直線為折痕折疊紙片,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在直線ED′上,若CF=4時(shí),DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線BC:,直線BD與x軸交于點(diǎn)A,點(diǎn)B(2,3),點(diǎn)D(0,).
(1)求直線BD的函數(shù)解析式;
(2)在y軸上找一點(diǎn)P,使得△ABC與△ACP的面積相等,求出點(diǎn)P的坐標(biāo);
(3)如圖2,E為線段AC上一點(diǎn),連結(jié)BE,一動(dòng)點(diǎn)F從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位運(yùn)動(dòng)到點(diǎn)E再沿線段EA以每秒個(gè)單位運(yùn)動(dòng)到A后停止,設(shè)點(diǎn)F在整個(gè)運(yùn)動(dòng)過(guò)程中所用時(shí)間為t,求t的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)的坐標(biāo)為
求該拋物線的解析式;
若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);
設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),作軸交拋物線于點(diǎn),求線段長(zhǎng)度的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com