【題目】如圖,AB是⊙O的直徑,C是BD的中點,CE⊥AB,垂足為E,BD交CE于點F.
【1】求證:CF=BF;
【2】若AD=2,⊙O的半徑為3,求BC的長
【答案】
【1】連結(jié)AC,如圖
∵C是弧BD的中點 ∴∠BDC=∠DBC
又∠BDC=∠BAC
在三角形ABC中,∠ACB=90°,CE⊥AB∴ ∠BCE=∠BAC,
∠BCE=∠DBC
∴ CF=BF 因此,CF=BF. 3分
【2】證法一:作CG⊥AD于點G,
∵C是弧BD的中點 ∴∠CAG=∠BAC,
即AC是∠BAD的角平分線.
∴ CE=CG,AE="AG" ,在Rt△BCE與Rt△DCG中,CE="CG" ,CB=CD
∴Rt△BCE≌Rt△DCG,∴BE="DG" ,∴AE=AB-BE=AG=AD+DG即 6-BE=2+DG
∴2BE=4,即BE=2 又 △BCE∽△BAC,∴
(舍去負值),∴7分
(2)證法二:∵AB是⊙O的直徑,CE⊥AB
∴∠BEF=,
在與中,
∵
∴∽,則
即, ∴
又∵, ∴
利用勾股定理得:
又∵△EBC∽△ECA則,即則
∴即
∴∴
【解析】試題分析:連接AC,根據(jù)已知條件利用等角對等邊可以得到CF=BF;作CG⊥AD于點G,先利用HL判定Rt△BCE≌Rt△DCG,推出BE=DG/span>,根據(jù)邊之間的關系可求得BE的值,再根據(jù)相似三角形的判定得到△BCE∽△BAC,根據(jù)相似三角形的對應邊成比例,可得到BC2=BEAB,這樣便求得BC的值,注意負值要舍去.
試題解析:(1)連接AC,如圖
∵C是弧BD的中點
∴∠BDC=∠DBC
又∵∠BDC=∠BAC
在△ABC中,∠ACB=90°,CE⊥AB
∴∠BCE=∠BAC
∠BCE=∠DBC
∴CF=BF;
(2)作CG⊥AD于點G,
∵C是弧BD的中點
∴∠CAG=∠BAC,
即AC是∠BAD的角平分線.
∴CE=CG,AE=AG
在Rt△BCE與Rt△DCG中,
CE=CG,CB=CD
∴Rt△BCE≌Rt△DCG(HL)
∴BE=DG
∴AE=AB-BE=AG=AD+DG
即6-BE=2+DG
∴2BE=4,即BE=2
又∵△BCE∽△BAC
∴BC2=BEAB=12
BC=±2(舍去負值)
∴BC=2.
科目:初中數(shù)學 來源: 題型:
【題目】為了調(diào)查某小區(qū)居民的用水情況,隨機抽查了若干戶家庭的月用水量,結(jié)果如下表:
月用水量(噸) | 3 | 4 | 5 | 8 |
戶 數(shù) | 2 | 3 | 4 | 1 |
則關于這若干戶家庭的月用水量,下列說法錯誤的是( )
A. 眾數(shù)是4 B. 平均數(shù)是4.6
C. 調(diào)查了10戶家庭的月用水量 D. 中位數(shù)是4.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB、CD分別切⊙O于點A、B、E,CD分別交PA、PB于點C、D.下列關系:①PA=PB;②∠ACO=∠DCO;③∠BOE和∠BDE互補;④△PCD的周長是線段PB長度的2倍.則其中說法正確的有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a=﹣34 , b=(﹣3)4 , c=(23)4 , d=(22)6 , 則下列四數(shù)關系的判斷,何者正確?( )
A.a=b,c=d
B.a=b,c≠d
C.a≠b,c=d
D.a≠b,c≠d
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點,經(jīng)過A、B的直線以每秒1個單位的
速度向下作勻速平移運動,與此同時,點P從點B出發(fā),在直線上以每秒1個單位的速度沿直線向右下方向作勻速運動.設它們運動的時間為秒.
(1)用含的代數(shù)式表示點P的坐標;
(2)過O作OC⊥AB于C,過C作CD⊥軸于D,問: 為何值時,以P為圓心、1為半徑的圓與直線OC相切?并說明此時與直線CD的位置關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com