【題目】如圖,二次函數(shù)的圖象經(jīng)過(-2,-1),(1,1)兩點,則下列關(guān)于此二次函數(shù)的說法正確的是【 】
A.y的最大值小于0 B.當(dāng)x=0時,y的值大于1
C.當(dāng)x=-1時,y的值大于1 D.當(dāng)x=-3時,y的值小于0
【答案】D。
【解析】根據(jù)圖象的對稱軸的位置、增減性及開口方向直接作答:由圖象知,
A、點(1,1)在圖象的對稱軸的左邊,所以y的最大值大于1,不小于0;故本選項錯誤;
B、當(dāng)x=0時,y的值就是函數(shù)圖象與y軸的交點,而圖象與y軸的交點在(1,1)點的左邊,
故y<1,故本選項錯誤;
C、對稱軸在(1,1)的右邊,在對稱軸的左邊y隨x的增大而增大,∵-1<1,∴x=-1時,y
的值小于x=1時,y的值1,即當(dāng)x=-1時,y的值小于1;故本選項錯誤;
D、當(dāng)x=-3時,函數(shù)圖象上的點在點(-2,-1)的左邊,所以y的值小于0;故本選項正確。
故選D。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O在線段AB上,(不與端點A、B重合),以點O為圓心,OA的長為半徑畫弧,線段BP與這條弧相切與點P,直線CD垂直平分PB,交PB于點C,交AB于點D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。
(1)求證:OP∥ED;
(2)當(dāng)∠ABP=30°時,求扇形AOP的面積,并證明四邊形PDBE是菱形;
(3)過點O作OF⊥DE于點F,如圖所示,線段EF的長度是否隨r的變化而變化?若不變,直接寫出EF的值;若變化,直接寫出EF與r的關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩個完全相同的三角形紙片和重合放置,其中,,若固定,將繞點旋轉(zhuǎn).
當(dāng)繞點旋轉(zhuǎn)到點恰好落在邊上時,如圖,則此時旋轉(zhuǎn)角為________(用含的式子表示).
當(dāng)繞點旋轉(zhuǎn)到如圖所示的位置時,小楊同學(xué)猜想:的面積與的面積相等,試判斷小楊同學(xué)的猜想是否正確,若正確,請你證明小楊同學(xué)的猜想.若不正確,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC、△CDE都是等腰三角形,且CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于點O,點M,N分別是線段AD,BE的中點,以下4個結(jié)論:①AD=BE;②∠DOB=180°-α;③△CMN是等邊三角形;④連OC,則OC平分∠AOE.正確的是( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)畫出△ABC和△A1B1C1關(guān)于原點O對稱,畫出△A1B1C1,并寫出△A1B1C1的各頂點的坐標(biāo);
(2)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到的△A2B2C2,畫出△A2B2C2,并寫出△A2B2C2的各頂點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】形如:的函數(shù)叫二次函數(shù),它的圖象是一條拋物線.類比一元一次方程的解可以看成兩條直線的交點的橫坐標(biāo);則一元二次方程的解可以看成拋物線與直線(軸)的交點的橫坐標(biāo);也可以看成是拋物線與直線________的交點的橫坐標(biāo);也可以看成是拋物線________與直線的交點的橫坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計圖.
(1)這次調(diào)查的市民人數(shù)為_____人,m=______,n=_______;
(2)補全條形統(tǒng)計圖;
(3)若該市約有市民1200000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市對“社會主義核心價值觀”達(dá)到“A.非常了解”程度的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,連接AC,∠DAC=∠BAC.
(1)求證:AD=DC;
(2)若∠D=120°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求解方程
(1)x2+3x﹣4=0(公式法);
(2)x2+4x﹣12=0(配方法);
(3)(x+3)(x﹣1)=5;
(4)(x+4)2=5(x+4).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com