邊長為4的正△AOB的OA邊在x軸的正半軸上,點(diǎn)B在第一象限,如圖所示,一雙曲線精英家教網(wǎng)分別交AB、OB于D、C兩點(diǎn),其中D為AB中點(diǎn)
(1)求雙曲線的解析式;
(2)將△AOB向右平移,當(dāng)C為OB中點(diǎn)時(shí),求平移的距離.
分析:(1)要求雙曲線的解析式,關(guān)鍵是求得點(diǎn)D的坐標(biāo),作DE⊥x軸于E,根據(jù)等邊三角形的性質(zhì)和30度的直角三角形的性質(zhì)即可求得DE,AE的長,進(jìn)一步求得點(diǎn)D的坐標(biāo),運(yùn)用待定系數(shù)法即可求解;
(2)首先求得OB的中點(diǎn)坐標(biāo),設(shè)向右平移了a個(gè)單位長度,進(jìn)一步表示出其對應(yīng)點(diǎn)的坐標(biāo),根據(jù)(1)的解析式即可求解.
解答:精英家教網(wǎng)解:(1)作DE⊥x軸于E.
根據(jù)題意,得AD=2,∠OAD=60°,
∴AE=1,DE=
3

∴OE=3,
即D(3,
3
),
設(shè)雙曲線的解析式是y=
k
x
(k≠0),
把D(3,
3
)代入,得k=3
3
,
∴y=
3
3
x
;

(2)設(shè)OB的中點(diǎn)是M,
根據(jù)等邊三角形的性質(zhì)和直角三角形的性質(zhì)得M(1,
3
),
設(shè)點(diǎn)M向右平移了a個(gè)單位長度,
則有M′(1+a,
3
),
代入(1)中的解析式,
3
=
3
3
1+a
,
∴a=2.
∴平移距離為2.
點(diǎn)評:此題能夠熟練運(yùn)用等邊三角形的性質(zhì)和30度的直角三角形的性質(zhì)進(jìn)行計(jì)算.注意平移和坐標(biāo)之間的變化關(guān)系:左減右加.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•邵東縣模擬)在平面直角坐標(biāo)系中,如圖所示,△AOB是邊長為2的等邊三角形,將△AOB繞著點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)得到△DCB,使得點(diǎn)D落在x軸的正半軸上,連接OC,AD.
(1)求證:OC=AD;
(2)求OC的長;
(3)求過A、D兩點(diǎn)的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長為8的等邊△AOB置于平面直角坐標(biāo)系中,點(diǎn)A在x軸正半軸上,過點(diǎn)O作OC⊥AB于點(diǎn)C,將△OAC繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到△OBD,這時(shí),點(diǎn)D恰好落在y軸上.若動點(diǎn)E從原點(diǎn)O出發(fā),沿線段OC向終點(diǎn)C運(yùn)動,動點(diǎn)F從點(diǎn)D出發(fā),沿線段DO向終點(diǎn)O運(yùn)動,兩點(diǎn)同時(shí)出發(fā),速度均為每秒1個(gè)單位長度.設(shè)運(yùn)動的時(shí)間為t秒.
(1)請直接寫出點(diǎn)A、點(diǎn)D的坐標(biāo);
(2)當(dāng)△OEF的面積為
3
3
4
時(shí),求t的值;
(3)設(shè)EF與OB相交于點(diǎn)P,當(dāng)t為何值時(shí),△OPF與△OBD相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

邊長為4的正△AOB的OA邊在x軸的正半軸上,點(diǎn)B在第一象限,如圖所示,一雙曲線分別交AB、OB于D、C兩點(diǎn),其中D為AB中點(diǎn)
(1)求雙曲線的解析式;
(2)將△AOB向右平移,當(dāng)C為OB中點(diǎn)時(shí),求平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省泰州市姜堰市勵(lì)才中學(xué)初三數(shù)學(xué)模擬考試試卷(解析版) 題型:解答題

邊長為4的正△AOB的OA邊在x軸的正半軸上,點(diǎn)B在第一象限,如圖所示,一雙曲線分別交AB、OB于D、C兩點(diǎn),其中D為AB中點(diǎn)
(1)求雙曲線的解析式;
(2)將△AOB向右平移,當(dāng)C為OB中點(diǎn)時(shí),求平移的距離.

查看答案和解析>>

同步練習(xí)冊答案