【題目】荊州古城是聞名遐邇的歷史文化名城,下表是荊州古城某歷史景點一周的抽樣統(tǒng)計參觀人數(shù),圖20-3-5是門票價格統(tǒng)計.
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
人數(shù) | 100 | 120 | 100 | 100 | 160 | 230 | 240 |
(1)把上表中一周的參觀人數(shù)作為一個樣本,直接指出這個樣本的中位數(shù),眾數(shù)和平均數(shù),分析表中數(shù)據(jù)還可得到一些信息,如雙休日參觀人數(shù)遠遠高于平時等,嘗試再寫出兩條相關信息.
(2)若“五一”黃金周有甲、乙兩旅行團到該景點參觀,兩團人數(shù)之和恰為上述樣本數(shù) 據(jù)的中位數(shù),乙團不超過50人,設兩團分別購票共付W元,甲團人數(shù)x人.①求W與x的函數(shù)關系式;②若甲團人數(shù)不超過100人,說明兩團合起來購票比分開購票最多可節(jié)約多少元?
【答案】(1)這個樣本的中位數(shù)是120,眾數(shù)是100,平均數(shù)是150.相關信息:①雙休日參觀人數(shù)為平時的2倍左右.②參觀人數(shù)自周五開始明顯上升等均可
(2)①W1=8(120-x)+6x=960-2x(70≤x<100)W2=8(120-x)+4x=960-4x(100<x<120)②340元
【解析】本題主要考查了算術平均數(shù),中位數(shù),眾數(shù).(1)利用眾數(shù)就是出現(xiàn)次數(shù)最多的數(shù),中位數(shù)就是大小處于中間位置的數(shù),以及平均數(shù)的公式即可求出答案;(2)根據(jù)(1)可知,兩團人數(shù)之和是120人,所有①W與x的函數(shù)關系式是W=6x+8(120-x),②求出團購需付的錢數(shù),即可求出答案
解:(1)這個樣本的中位數(shù)是120,眾數(shù)是100,平均數(shù)是150.
相關信息:①雙休日參觀人數(shù)為平時的2倍左右.②參觀人數(shù)自周五開始明顯上升等均可.
(2)①當甲團人數(shù)為x人時,乙團人數(shù)為(120-x)人.
由題意:0<120-x≤50,得70≤x<120.
若70≤x<100,則兩團購票的總費用W1=8(120-x)+6x=960-2x;
若100<x<120,則兩團購票的總費用W2=8(120-x)+4x=960-4x.
②兩團合起購票的花費為4×120元=480元.
由①知當70≤x≤100時,兩團合起購票比分開購票可節(jié)省y1=960-2x-480=480-2x,
當x=70時,y1最大=(480-140)元=340元.
當100<x<120時,兩團合起購票比分開購票可節(jié)省y2=960-4x-480=480-4x,
故當x=101時,y2最大=(480-4×101)元=76元.
綜上所述,兩團合起來購票比分開購票最多省340元.
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y= 過點A(2,4),B(0,3)、題目中的矩形部分是一段因墨水污染而無法辨認的文字.
(1)根據(jù)現(xiàn)有的信息,請求出題中的一次函數(shù)的解析式.
(2)根據(jù)關系式畫出這個函數(shù)圖象.
(3)過點B能不能畫出一直線BC將△ABO(O為坐標原點)分成面積比為1:2的兩部分?如能,可以畫出幾條,并求出其中一條直線所對應的函數(shù)關系式,其它的直接寫出函數(shù)關系式;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在本學期某次考試中,某校初二(1)、初二(2)兩班學生數(shù)學成績統(tǒng)計如下表:
分數(shù) | 50 | 60 | 70 | 80 | 90 | 100 | |
人 數(shù) | 二(1)班 | 3 | 5 | 16 | 3 | 11 | 12 |
二(2)班 | 2 | 5 | 11 | 12 | 13 | 7 |
請根據(jù)表格提供的信息回答下列問題:
(1)二(1)班平均成績?yōu)?/span>______分,二(2)班平均成績?yōu)?/span>______分,從平均成績看兩個班成績誰優(yōu)誰次?
(2)二(1)班眾數(shù)為______分,二(2)班眾數(shù)為______分.從眾數(shù)看兩個班的成績誰優(yōu)誰次?______.
(3)已知二(1)班的方差大于二(2)班的方差,那么說明什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司欲招聘一名部門經(jīng)理,對甲、乙、丙三名候選人進行了三項素質測試.各項測試成績如表所示:
(1)如果根據(jù)三次測試的平均成績確定人選,那么誰將被錄用?
(2)根據(jù)實際需要,公司將專業(yè)知識、語言能力和綜合素質三項測試得分按4:3:1的比例確定各人的測試成績,此時誰將被錄用?
(3)請你將專業(yè)知識、語言能力和綜合素質三項測試得分重新設定比例來確定各人的測試成績,使得乙被錄用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4,∠DAC的角平分線交DC于點E,點P、Q分別是邊AD和AE上的動點(兩動點不重合).
(1)PQ+DQ的最小值是 .
(2)說出PQ+DQ取得最小值時,點P、Q的位置,并在圖中畫出;
(3)請對(2)中你所給的結論進行證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如本題圖①,在△ABC中,已知. 過點A作BC的平行線與∠ABC的平分線交于點D,連接CD.
(1)求的大;
(2)在線段的延長線上取一點,以為角的一邊作,另一邊交BD延長線于點E, 若(如本題圖②所示),試求的值(用含的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com