【題目】如圖,在RtABCRtBCD中,∠BAC=∠BDC90°,BC8,ABAC,∠CBD30°,BD4M,N分別在BD,CD上,∠MAN45°,則△DMN的周長(zhǎng)為_____

【答案】4+4

【解析】

將△ACN繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△ABE,由旋轉(zhuǎn)得出∠NAE90°,ANAE,∠ABE=∠ACD,∠EAB=∠CAN,求出∠EAM=∠MAN,根據(jù)SAS推出△AEM≌△ANM,根據(jù)全等得出MNME,求出MNCN+BM,解直角三角形求出DC,即可求出△DMN的周長(zhǎng)=BD+DC,代入求出即可.

將△ACN繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△ABE,如圖:

由旋轉(zhuǎn)得:∠NAE90°,ANAE,∠ABE=∠ACD,∠EAB=∠CAN,

∵∠BAC=∠D90°,

∴∠ABD+ACD360°﹣90°﹣90°=180°,

∴∠ABD+ABE180°,

E,BM三點(diǎn)共線,

∵∠MAN45°,∠BAC90°,

∴∠EAM=∠EAB+BAM=∠CAN+BAM=∠BAC﹣∠MAN90°﹣45°=45°,

∴∠EAM=∠MAN,

在△AEM和△ANM中,

,

∴△AEM≌△ANMSAS),

MNME,

MNCN+BM,

∵在RtBCD中,∠BDC90°,∠CBD30°,BD4,CDBD×tanCBD4

∴△DMN的周長(zhǎng)為DM+DN+MNDM+DN+BM+CNBD+DC4+4,

故答案為:4+4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4.

1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?

2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬(wàn)元,乙隊(duì)為0.25萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車司機(jī)小李某天下午運(yùn)營(yíng)全是在東西走向的人民大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行駛里程如下:單位:千米

+15, -3, +14,-11,+10,-12,+4,-15,+16,-18

1他將最后一名乘客送到目的地時(shí),距下午出車地點(diǎn)是多少千米?

2若汽車耗油量為千米,這天下午共耗油多少升

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列調(diào)查方式,你認(rèn)為最合適的是(

A.為了了解同學(xué)們對(duì)央視《主持人大賽》欄目的喜愛(ài)程度,小華在學(xué)校隨機(jī)采訪了名七年級(jí)學(xué)生

B.咸陽(yáng)機(jī)場(chǎng)對(duì)旅客上飛機(jī)進(jìn)行安檢,采用抽樣調(diào)查方式

C.為了了解西安市七年級(jí)學(xué)生的身高情況,采用全面調(diào)查方式

D.為了了解我省居民的日平均用電量,采用抽樣調(diào)查方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)P為正方形內(nèi)一動(dòng)點(diǎn),若點(diǎn)M在AB上,且滿足△PBC∽△PAM,延長(zhǎng)BP交AD于點(diǎn)N,連結(jié)CM.

1如圖一,若點(diǎn)M在線段AB上,求證:AP⊥BN;AM=AN

2如圖二,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,滿足△PBC∽△PAM的點(diǎn)M在AB的延長(zhǎng)線上時(shí),APBN和AM=AN是否成立?

是否存在滿足條件的點(diǎn)P,使得PC=?(不需說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用粗線在數(shù)軸上表示了一個(gè)“范圍”,這個(gè)“范圍”包含所有大于1且小于2的數(shù)(數(shù)軸上12這兩個(gè)數(shù)的點(diǎn)空心,表示這個(gè)范圍不包含數(shù)12).

請(qǐng)你在數(shù)軸上表示出一個(gè)范圍,使得這個(gè)范圍:

1)包含所有大于﹣3且小于0的數(shù)(畫(huà)在數(shù)軸(1)上);

2)包含﹣1.5、π這兩個(gè)數(shù),且只含有5個(gè)整數(shù)(畫(huà)在數(shù)軸(2)上);

3)同時(shí)滿足以下三個(gè)條件:(畫(huà)在數(shù)軸(3)上)

①至少有100對(duì)互為相反數(shù)和100對(duì)互為倒數(shù);

②有最小的正整數(shù);

③這個(gè)范圍內(nèi)最大的數(shù)與最小的數(shù)表示的點(diǎn)的距離大于3但小于4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCD的邊CD上一點(diǎn),把ADE沿AE對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)F恰好落在BC上,已知折痕AE=cm,且tanEFC=,那么該矩形的周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的面積為20cm2,對(duì)角線交于點(diǎn)O,以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1,以AB、AO1為鄰邊作平行四邊形AO1C2B依此類推,則平行四邊形AO2019C2020B的面積為( 。cm2

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是O內(nèi)接四邊形,AC為直徑,DEBC,垂足為E.

(1)求證:CD平分ACE;

(2)判斷直線EDO的位置關(guān)系,并說(shuō)明理由;

(3)若CE=1,AC=4,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案