【題目】如圖,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分別在BD,CD上,∠MAN=45°,則△DMN的周長(zhǎng)為_____.
【答案】4+4.
【解析】
將△ACN繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△ABE,由旋轉(zhuǎn)得出∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,求出∠EAM=∠MAN,根據(jù)SAS推出△AEM≌△ANM,根據(jù)全等得出MN=ME,求出MN=CN+BM,解直角三角形求出DC,即可求出△DMN的周長(zhǎng)=BD+DC,代入求出即可.
將△ACN繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△ABE,如圖:
由旋轉(zhuǎn)得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,
∵∠BAC=∠D=90°,
∴∠ABD+∠ACD=360°﹣90°﹣90°=180°,
∴∠ABD+∠ABE=180°,
∴E,B,M三點(diǎn)共線,
∵∠MAN=45°,∠BAC=90°,
∴∠EAM=∠EAB+∠BAM=∠CAN+∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,
∴∠EAM=∠MAN,
在△AEM和△ANM中,
,
∴△AEM≌△ANM(SAS),
∴MN=ME,
∴MN=CN+BM,
∵在Rt△BCD中,∠BDC=90°,∠CBD=30°,BD=4,CD=BD×tan∠CBD=4,
∴△DMN的周長(zhǎng)為DM+DN+MN=DM+DN+BM+CN=BD+DC=4+4,
故答案為:4+4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬(wàn)元,乙隊(duì)為0.25萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車司機(jī)小李某天下午運(yùn)營(yíng)全是在東西走向的人民大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行駛里程如下:(單位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他將最后一名乘客送到目的地時(shí),距下午出車地點(diǎn)是多少千米?
(2)若汽車耗油量為升∕千米,這天下午共耗油多少升
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列調(diào)查方式,你認(rèn)為最合適的是( )
A.為了了解同學(xué)們對(duì)央視《主持人大賽》欄目的喜愛(ài)程度,小華在學(xué)校隨機(jī)采訪了名七年級(jí)學(xué)生
B.咸陽(yáng)機(jī)場(chǎng)對(duì)旅客上飛機(jī)進(jìn)行安檢,采用抽樣調(diào)查方式
C.為了了解西安市七年級(jí)學(xué)生的身高情況,采用全面調(diào)查方式
D.為了了解我省居民的日平均用電量,采用抽樣調(diào)查方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)P為正方形內(nèi)一動(dòng)點(diǎn),若點(diǎn)M在AB上,且滿足△PBC∽△PAM,延長(zhǎng)BP交AD于點(diǎn)N,連結(jié)CM.
(1)如圖一,若點(diǎn)M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,滿足△PBC∽△PAM的點(diǎn)M在AB的延長(zhǎng)線上時(shí),AP⊥BN和AM=AN是否成立?
②是否存在滿足條件的點(diǎn)P,使得PC=?(不需說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用粗線在數(shù)軸上表示了一個(gè)“范圍”,這個(gè)“范圍”包含所有大于1且小于2的數(shù)(數(shù)軸上1與2這兩個(gè)數(shù)的點(diǎn)空心,表示這個(gè)范圍不包含數(shù)1和2).
請(qǐng)你在數(shù)軸上表示出一個(gè)范圍,使得這個(gè)范圍:
(1)包含所有大于﹣3且小于0的數(shù)(畫(huà)在數(shù)軸(1)上);
(2)包含﹣1.5、π這兩個(gè)數(shù),且只含有5個(gè)整數(shù)(畫(huà)在數(shù)軸(2)上);
(3)同時(shí)滿足以下三個(gè)條件:(畫(huà)在數(shù)軸(3)上)
①至少有100對(duì)互為相反數(shù)和100對(duì)互為倒數(shù);
②有最小的正整數(shù);
③這個(gè)范圍內(nèi)最大的數(shù)與最小的數(shù)表示的點(diǎn)的距離大于3但小于4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD的邊CD上一點(diǎn),把△ADE沿AE對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)F恰好落在BC上,已知折痕AE=cm,且tan∠EFC=,那么該矩形的周長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的面積為20cm2,對(duì)角線交于點(diǎn)O,以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1,以AB、AO1為鄰邊作平行四邊形AO1C2B…依此類推,則平行四邊形AO2019C2020B的面積為( 。cm2.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,=,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)若CE=1,AC=4,求陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com