【題目】如圖,已知∠130°∠B60°,AB⊥AC。

1)計算:∠DAB∠B

2ABCD平行嗎?ADBC平行嗎?

【答案】(1)180°(2)AD∥BC,AB與CD不平行

【解析】試題分析:(1)根據(jù)三角形的內角和定理求出∠ACB,根據(jù)平行線的判定證出ADBC即可

2)根據(jù)三角形的內角和定理求出∠ACB=1,根據(jù)平行線的判定即可推出答案.

試題解析:(1ABAC∴∠BAC=90°.∵∠B=60°,1=30°,∴∠DAB+∠B=30°+90°+60°=180°.

2)答ABCD不平行理由是根據(jù)已知條件不能推出ABCD

ADBC平行理由是

ABAC∴∠BAC=90°.∵∠B=60°,1=30°,∴∠DAB+∠B=30°+90°+60°=180°,ADBC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某超市第一次用4600元購進甲、乙兩種商品,其中甲商品件數(shù)的2倍比乙商品件數(shù)的3倍少40件,甲、乙兩種商品的進價和售價如下表(利潤=售價﹣進價):

進價(元/件)

22

30

售價(元/件)

28

40

(1)該超市第一次購進甲、乙兩種商品的件數(shù)分別是多少?

(2)該超市將第一次購進的甲、乙兩種商品全部賣出后一共可獲得多少利潤?

(3)該超市第二次以同樣的進價又購進甲、乙兩種商品.其中甲商品件數(shù)是第一次的2倍,乙商品的件數(shù)不變.甲商品按原價銷售,乙商品打折銷售.第二次甲、乙兩種商品銷售完以后獲得的利潤比第一次獲得的利潤多280元,則第二次乙商品是按原價打幾折銷售的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC和BD交于點O,分別過點C、D作CE∥BD,DE∥AC,CE和DE交于點E.
(1)求證:四邊形ODEC是矩形;
(2)當∠ADB=60°,AD=2 時,求sin∠AED的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,ADE 均是等腰直角三角形,BC DE 相交于 F 點,若 AC=AE=1,則四邊形 AEFC 的周長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.

(1)請寫出圖中所有∠EOC的補角 ____________________;

(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形 ABCD 中,AB=8,AD=10,點 E BC 上一點,將ABE 沿 AE 折疊,使點 B 落在長方形內點 F 處, DF=6,求 BE 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y= 與y=kx2﹣k(k≠0)在同一直角坐標系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC的面積為84,BC=21,現(xiàn)將△ABC沿直線BC向右平移a(0<a<21)個單位到△DEF的位置.

(1)BC邊上的高;

(2)AB=10,

①求線段DF的長;

②連結AE,當△ABE時等腰三角形時,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形 ABCD,A=90°,AB=3m,BC=12m,CD=13m,DA=4m

(1)求證:BDCB;

(2)求四邊形 ABCD 的面積;

(3)如圖 2,以 A 為坐標原點,以 AB、AD所在直線為 x軸、y軸建立直角坐標系,

Py軸上,若 SPBD=S四邊形ABCD, P的坐標.

查看答案和解析>>

同步練習冊答案