【題目】如圖,已知AB、CD為矩形的四個頂點,,,動點P、Q分別從點A、C同時出發(fā),P的速度向點B移動,一直到點B為止,Q的速度向點D移動,設移動時間為,問:

t為何值時,PQ兩點間的距離是10cm?

t為何值時,P、Q兩點間距離最?最小距離為多少?

、Q兩點間距離能否是18cm?若能,求出t的值;若不能,請說明理由.

【答案】(1)P、Q出發(fā)秒時,P,Q間的距離是10厘米;(2),PQ最小,最小為6;(3)兩點間距離不能是18cm

【解析】

1)可通過構建直角三角形來求解.過QQMABM,如果設出發(fā)x秒后,QP10厘米.那么可根據(jù)路程=速度×時間,用未知數(shù)表示出PMPQ的值,然后在直角三角形PMQ中,求出未知數(shù)的值.

2)在直角三角形PMQ中,PM0時,PQ就最小,那么可根據(jù)這個條件和(1)中用勾股定理得出的PQ的式子,讓PM0,得出此時時間的值.

3)利用勾股定理求得線段AC的長,與18比較即可得到結(jié)論.

解:設出發(fā)t秒后PQ兩點間的距離是10厘米.

,,QMABM,

,

,

解得:,

答:P、Q出發(fā)秒時,P,Q間的距離是10厘米;

2)∵PQ=,

∴當,,PQ最小,最小為6;

3)∵AC=18,

P、Q兩點間距離不能是18cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形的兩個內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準互余三角形”.

(1)若ABC準互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準互余三角形.試問在邊BC上是否存在點E(異于點D),使得ABE也是準互余三角形?若存在,請求出BE的長;若不存在,請說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準互余三角形,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線的函數(shù)表達式為,它與軸、軸的交點分別為A、B兩點.

(1)求點A、B的坐標;

(2)設F是軸上一動點,⊙P經(jīng)過點B且與軸相切于點F,設⊙P的圓心坐標為P(x,y),求y與之間的函數(shù)關系;

(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點B?若存在,求出圓心P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若△ABC中,其中一個內(nèi)角是另一個內(nèi)角的一半,則稱△ABC為“半角三角形”.

1)若RtABC為半角三角形,∠A=90°,則其余兩個角的度數(shù)為.

2)如圖,以△ABC的邊AB為直徑畫圓,與邊AC交于M,與邊BC交于N,已知CN=AC

①求證:∠C=60°.

②若△ABC是半角三角形,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么我們稱拋物線C1C2關聯(lián).

1)已知拋物線C1y=﹣2x2+4x+3C2y2x2+4x1,請判斷拋物線C1與拋物線C2是否關聯(lián),并說明理由.

2)拋物線C1,動點P的坐標為(t,2),將拋物線繞點P旋轉(zhuǎn)180°得到拋物線C2,若拋物線C1C2關聯(lián),求拋物線C2的解析式.

3)點A為拋物線C1的頂點,點B為拋物線C1關聯(lián)的拋物線的頂點,是否存在以AB為斜邊的等腰直角三角形ABC,使其直角頂點C在直線x=﹣10上?若存在,求出C點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,點C的坐標為(0,3),點A在x軸的負半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y=的圖象經(jīng)過點D,與BC的交點為N.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標.

查看答案和解析>>

同步練習冊答案