【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O.E,F(xiàn)是AC上的兩點(diǎn),并且AE=CF,連接DE,BF.
(1)求證:△DOE≌△BOF;
(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有A型產(chǎn)品40件,B型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完。設(shè)分配給甲店A型產(chǎn)品x件,兩商店銷售這兩種產(chǎn)品每件的利潤(rùn)(元)如下表:
A型利潤(rùn) | B型利潤(rùn) | |
甲店 | 200 | 170 |
乙店 | 160 | 150 |
(1)分配給乙店B型產(chǎn)品 件(用含x的代數(shù)式表示)。
(2)設(shè)這家公司賣出這100件產(chǎn)品的總利潤(rùn)為W(元),求W關(guān)于x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍。
(3)若公司要求總利潤(rùn)不低于17560元,有幾種不同分配方案?哪種方案總利潤(rùn)最大?請(qǐng)求出最大利潤(rùn)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在課題學(xué)習(xí)中,老師要求用長(zhǎng)為12厘米,寬為8厘米的長(zhǎng)方形紙片制作一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.三位同學(xué)分別以下列方式在長(zhǎng)方形紙片上截去兩角(圖中陰影部分),然后沿虛線折成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.
甲:如圖1,盒子底面的四邊形ABCD是正方形;
乙:如圖2,盒子底面的四邊形ABCD是正方形;
丙:如圖3,盒子底面的四邊形ABCD是長(zhǎng)方形,AB=2AD.
將這三位同學(xué)所折成的無(wú)蓋長(zhǎng)方體的容積按從大到小的順序排列,正確的是
A.甲>乙>丙B.甲>丙>乙C.丙>甲>乙D.丙>乙>甲
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB=8cm,C是線段AB上一點(diǎn),AC=3.2cm,M是AB的中點(diǎn),N是AC的中點(diǎn).
(1)求線段CM的長(zhǎng);
(2)求線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),頂點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)是M′.
(1)求拋物線的解析式;
(2)若直線AM′與此拋物線的另一個(gè)交點(diǎn)為C,求△CAB的面積;
(3)是否存在過(guò)A,B兩點(diǎn)的拋物線,其頂點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,使得四邊形APBQ為正方形?若存在,求出此拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算與化簡(jiǎn)
(1)計(jì)算:(6m2+4m﹣3)+2(2m2﹣4m+1);
(2)先化簡(jiǎn),再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,∠BOE=90°,OF平分∠AOD,∠COE=20°.
(1)求∠BOD與∠DOF的度數(shù).
(2)寫(xiě)出∠COE的所有余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板放在同一平面內(nèi),使直角頂點(diǎn)重合于點(diǎn)O
(1)如圖①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度數(shù).
(2)如圖①,你發(fā)現(xiàn)∠AOD與∠BOC的大小有何關(guān)系?∠AOB與∠DOC有何關(guān)系?直接寫(xiě)出你發(fā)現(xiàn)的結(jié)論.
(3)如圖②,當(dāng)△AOC與△BOD沒(méi)有重合部分時(shí),(2)中你發(fā)現(xiàn)的結(jié)論是否還仍然成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x,y的方程組,則下列結(jié)論中正確的是( )
①當(dāng)a=5時(shí),方程組的解是;
②當(dāng)x,y的值互為相反數(shù)時(shí),a=20;
③不存在一個(gè)實(shí)數(shù)a使得x=y;
④若,則a=2.
A. ①②③④ B. ②③ C. ②③④ D. ②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com