【題目】給出下列說(shuō)法:①棱柱的上、下底面的形狀相同;②相等的角是對(duì)頂角;③若AB=BC,則點(diǎn)B為線段AC的中點(diǎn);④直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

其中正確說(shuō)法的個(gè)數(shù)有 ( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】B

【解析】

分別根據(jù)棱柱的特征以及對(duì)頂角和垂線段的性質(zhì)得出答案即可.

棱柱的上、下底面的形狀相同,此說(shuō)法正確;

相等的兩個(gè)角不一定是對(duì)頂角,故此說(shuō)法錯(cuò)誤;

ABBC,則點(diǎn)B為線段AC的中點(diǎn),A,BC不一定在一條直線上,故此選項(xiàng)錯(cuò)誤;

直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短,此選項(xiàng)正確.

正確的有2個(gè).

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:a2a4=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多項(xiàng)式6m3﹣2m2+4m+2減去3(2m3+m2+3m﹣1),再減去3(2m3+m2+3m﹣1)(m為整數(shù))的差一定是(
A.5的倍數(shù)
B.偶數(shù)
C.3的倍數(shù)
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,直線AB、CD相交于O,∠AOC=50°,OE平分∠DOB,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折疊,使邊AB與AC重合,點(diǎn)B落在AC邊上的B′處,則折痕AP的長(zhǎng)等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形AOBC在直角坐標(biāo)系中,點(diǎn)A在y軸上,點(diǎn)B在x軸上,已知點(diǎn)C的坐標(biāo)是(8,4).

(1)求對(duì)角線AB所在直線的函數(shù)關(guān)系式;
(2)對(duì)角線AB的垂直平分線MN交x軸于點(diǎn)M,連接AM,求線段AM的長(zhǎng);
(3)若點(diǎn)P是直線AB上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAM的面積與長(zhǎng)方形OABC的面積相等時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(0,6),B(8,0),點(diǎn)C是線段AB的中點(diǎn),CDOBOBDRtEFH的斜邊EH在射線AB上,頂點(diǎn)F在射線AB的左側(cè),EFOA,點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度向B運(yùn)動(dòng),到點(diǎn)B停止,AE=EF,運(yùn)動(dòng)時(shí)間為ts).

(1)在RtEFH中,EF= ,EH= ,點(diǎn)F坐標(biāo)為( , )(用含t的代數(shù)式表示)

(2)t為何值時(shí),HC重合?

(3)設(shè)EFHCDB重疊部分圖形的面積為S(S>0),求St的函數(shù)關(guān)系式。

(4)在整個(gè)運(yùn)動(dòng)過(guò)程中,RtEFH掃過(guò)的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多項(xiàng)式ax5+bx3+3x+c,當(dāng)x=0時(shí),該代數(shù)式的值為﹣1.
(1)求c的值;
(2)已知當(dāng)x=3時(shí),該式子的值為9,試求當(dāng)x=﹣3時(shí)該式子的值;
(3)在第(2)小題的已知條件下,若有3a=5b成立,試比較a+b與c的大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,已知∠ABC=50°,∠ACB=60°,BE是AC上的高,CF是AB上的高,H是BE和CF的交點(diǎn),則 ∠BHC=

查看答案和解析>>

同步練習(xí)冊(cè)答案