【題目】如圖,在中,,,將繞點順時針方向旋轉到的位置,連接,求的長?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點A和點B(3,0),與軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線在軸下方上的動點,過點M作MN//軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當MN取最大值時,在拋物線的對稱軸上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在△ABC中,如果正方形PQMN的邊QM在BC上,頂點P,N分別在AB,AC上,那么我們稱這樣的正方形為“三角形內接正方形”小波同學按數(shù)學家波利亞在《怎樣解題》中的方法進行操作:如圖(2),任意畫△ABC,在AB上任取一點P′,畫正方形P′Q′M′N′,使Q′,M′在BC邊上,N′在△ABC內,連結BN′并延長交AC于點N,畫NM⊥BC于點M,NP⊥NM交AB于點P,PQ⊥BC于點Q,得到四邊形PQMN,小波把線段BN稱為“波利亞線”,請幫助小波解決下列問題:
(1)四邊形PQMN是否是△ABC的內接正方形,請證明你的結論;
(2)若△ABC為等邊三角形,邊長BC=6,求△ABC內接正方形的邊長;
(3)如圖(3),若在“波利亞線”BN上截取NE=NM,連結EQ,EM.當時,猜想∠QEM的度數(shù),并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,為坐標原點.直線與拋物線同時經過.
(1)求的值.
(2)點是二次函數(shù)圖象上一點,(點在下方),過作軸,與交于點,與軸交于點.求的最大值.
(3)在(2)的條件下,是否存在點,使和相似?若存在,求出點坐標,不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:對于拋物線y,以y軸上的點M(0,m)為中心,作該拋物線關于點M對稱的拋物線y′,則我們稱拋物線y′為拋物線y關于點M(0,m)的“衍生拋物線”,點M為“衍生中心”.
(1)求拋物線y=x2-2關于原點O(0,0)的衍生拋物線的解析式.
(2)已知拋物線y=ax2+2ax-b(a≠0)
①若拋物線y的衍生拋物線為y′=bx2-2bx+a2(b≠0),兩拋物線有兩個交點,且恰好是它們的頂點,求a、b的值及衍生中心的坐標;
②若拋物線y關于點(0,k+12)的衍生拋物線為y1,其頂點為A1;關于點(0,k+22)的衍生拋物線為y2,其頂點為A2;……;關于點(0,k+n2)的衍生拋物線為yn,其頂點為An…(n為正整數(shù)).求AnAn+1的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下表:
x | 0 | 1 | 2 |
ax2 |
| 1 |
|
ax2+bx+c | ﹣3 |
| ﹣3 |
(1)求a、b、c的值,并在表內空格處填入正確的數(shù);
(2)根據(jù)上面的結果解答問題:
①在方格紙中畫出函數(shù)y=ax2+bx+c的圖象;
②根據(jù)圖象回答:當x的取值范圍是 時,y≤0?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的紙箱里有分別標有漢字“熱”“愛”“祖”“國”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先搖勻再摸球.
(1)若從中任取一個球,求摸出球上的漢字剛好是“國”字的概率;
(2)小紅從中任取球,不放回,再從中任取一球,請用樹狀圖或列表法,求小紅取出的兩個球上的漢字恰好能組成“愛國”或“祖國”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校七年級學生作業(yè)時間情況,隨機抽取了該校七年級部分學生進行調查,并根據(jù)調查結果繪制了如下的統(tǒng)計圖.
作業(yè)時間分組表(單位:小時)
別 | 作業(yè)時間 | 人數(shù) | 頻率 |
A | 1≤x≤1.5 | 5 | 0.1 |
B | 1.5≤x≤2 | 20 | b |
C | 2≤x≤2.5 | m | n |
D | x≥2.5 | 7 | 0.14 |
小計 | a | 1 |
(1)統(tǒng)計圖中的a=______;b=______;m=______;n=______.
(2)求出C組的扇形的圓心角度數(shù).
(3)如果該校七年級學生共400名,試估計這400名生作業(yè)時間在B組和C組的人數(shù)共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.
(1)該店每天賣出這兩種菜品共多少份?
(2)該店為了增加利潤,準備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com