【題目】在中, ,,,點(diǎn)是斜邊的中點(diǎn),以點(diǎn)為頂點(diǎn)作,射線、分別交邊、于點(diǎn)、.
特例
(1)如圖1,若,不添加輔助線,圖1中所有與相似的三角形為 , ;
操作探究:
(2)將(1)中的從圖1的位置開始繞點(diǎn)按逆時針方向旋轉(zhuǎn),得到,如圖2,當(dāng)射線,分別交邊、于點(diǎn)、時,求的值;
拓展延伸:
(3)如圖3,中,,,,點(diǎn)是斜邊的中點(diǎn),以點(diǎn)為頂點(diǎn)作,射線、分別交邊、的延長線于點(diǎn)、,則的值為 .(用含、的代數(shù)式表示,直接回答即可)
【答案】解:(1),,;(2);(3)
【解析】
(1)根據(jù)預(yù)備定理以及相似三角形的性質(zhì),即可得到結(jié)論;
(2)由旋轉(zhuǎn)可知: ,且證得∽,利用(1)中的結(jié)論可求得答案;
(3)構(gòu)造輔助線,易證得,利用上述的方法,可求得結(jié)論.
解:(1),∴
∵,,
∴,∴
∵點(diǎn)是斜邊的中點(diǎn),,,
∴,
∴
故答案是:,,
(2)由(1)得,∽
∴
∵點(diǎn)是斜邊的中點(diǎn)
∴
∵
∴
同理可得
由旋轉(zhuǎn)可知: ,且
∴∽
∴
(3) 作DPBC于P,作DQAC于Q,如圖,
∵DPBC,,點(diǎn)是斜邊的中點(diǎn),
∴,∴,
∵DQAC,,點(diǎn)是斜邊的中點(diǎn),
∴,∴,
∵DPBC,DQAC,,
∴,
∵,
∴,
∴,
∴,
∴,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)是關(guān)于的反比例函數(shù)。
(1)求的值;
(2)函數(shù)圖象在哪些象限?在每個象限內(nèi),隨的增大而怎樣變化?
(3)當(dāng)時,求的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題9分)如圖,是的直徑,是上一點(diǎn),連接.過點(diǎn)作的切線,交的延長線于點(diǎn),在上取一點(diǎn),使,連接,交于點(diǎn).請補(bǔ)全圖形并解決下面的問題:
(1)求證:;
(2)如果,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.
據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)
①cos(﹣60°)=﹣;
②sin75°=;
③sin2x=2sinxcosx;
④sin(x﹣y)=sinxcosy﹣cosxsiny.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓(xùn)練小組,他們?nèi)酥g進(jìn)行互相傳球練習(xí),籃球從一個人手中隨機(jī)傳到另外一個人手中計(jì)作傳球一次,共連續(xù)傳球三次.
(1)若開始時籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是 ;
(2)若開始時籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旅行社為吸引游客組團(tuán)去黃滿寨風(fēng)景區(qū)旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):如果人數(shù)不超過25人,人均旅游費(fèi)用為:1000元;如果人數(shù)超過25人,每超過1人,人均旅游費(fèi)用降低20元,但人均旅游費(fèi)用不低于700元.某單位組織員工去黃滿寨風(fēng)景區(qū)旅游,共支付給旅行社旅游費(fèi)用27000元,請問:
(1)該單位旅游人數(shù)超過25人嗎?說明理由.
(2)這次共有多少名員工去黃滿寨風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是拋物線對稱軸上的一個動點(diǎn),當(dāng)周長最小時,求點(diǎn)的坐標(biāo)及的最小周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,每個小正方形的邊長均為1,則下列A、B、C、D四個圖中的三角形(陰影部分)與△EFG相似的是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com