【題目】點(diǎn)C、D在線段AB上,若點(diǎn)C是線段AD的中點(diǎn),2BD>AD,則下列結(jié)論正確的是( ).
A. CD<AD- BD B. AB>2BD C. BD>AD D. BC>AD
【答案】D
【解析】
根據(jù)點(diǎn)C是線段AD的中點(diǎn),可得AD=2AC=2CD,再根據(jù)2BD>AD,可得BD> AC= CD,
再根據(jù)線段的和差,逐一進(jìn)行判即可。
∵點(diǎn)C是線段AD的中點(diǎn),
∴AD=2AC=2CD,
∵2BD>AD,
∴BD> AC= CD,
A. CD=AD-AC> AD- BD,該選項(xiàng)錯(cuò)誤;
B. 由A得AD- BD CD,則ADBD+CD=BC,則AB=AD+BD BC+ BD2BD,該選項(xiàng)錯(cuò)誤;
C.由B得 AB2BD ,則BD+AD2BD,則ADBD,該選項(xiàng)錯(cuò)誤;
D. 由A得AD- BD CD,則ADBD+CD=BC, 該選項(xiàng)正確
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°,E為AB的中點(diǎn),AC與DE交于點(diǎn)F.
(1)求證:CE∥AD;
(2)求證:AC2=ABAD;
(3)若AC=,AB=8,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小元設(shè)計(jì)的“過(guò)圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過(guò)程.
已知:如圖,⊙O及⊙O上一點(diǎn)P.
求作:過(guò)點(diǎn)P的⊙O的切線.
作法:如圖,
①作射線OP;
②在直線OP外任取一點(diǎn)A,以點(diǎn)A為圓心,AP為半徑作⊙A,與射線OP交于另一點(diǎn)B;
③連接并延長(zhǎng)BA與⊙A交于點(diǎn)C;
④作直線PC;
則直線PC即為所求.
根據(jù)小元設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:∵ BC是⊙A的直徑,
∴∠BPC=90°(____________)(填推理的依據(jù)).
∴OP⊥PC.
又∵OP是⊙O的半徑,
∴PC是⊙O的切線(____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑作⊙O分別交AB、AC于E、F,連結(jié)EF,則線段EF長(zhǎng)度的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OADB的頂點(diǎn)A,B的坐標(biāo)分別為A(﹣6,0),B(0,4).過(guò)點(diǎn)C(﹣6,1)的雙曲線y=(k≠0)與矩形OADB的邊BD交于點(diǎn)E.
(1)填空:OA= ,k= ,點(diǎn)E的坐標(biāo)為 ;
(2)當(dāng)1≤t≤6時(shí),經(jīng)過(guò)點(diǎn)M(t﹣1,﹣t2+5t﹣)與點(diǎn)N(﹣t﹣3,﹣t2+3t﹣)的直線交y軸于點(diǎn)F,點(diǎn)P是過(guò)M,N兩點(diǎn)的拋物線y=﹣x2+bx+c的頂點(diǎn).
①當(dāng)點(diǎn)P在雙曲線y=上時(shí),求證:直線MN與雙曲線y=沒(méi)有公共點(diǎn);
②當(dāng)拋物線y=﹣x2+bx+c與矩形OADB有且只有三個(gè)公共點(diǎn),求t的值;
③當(dāng)點(diǎn)F和點(diǎn)P隨著t的變化同時(shí)向上運(yùn)動(dòng)時(shí),求t的取值范圍,并求在運(yùn)動(dòng)過(guò)程中直線MN在四邊形OAEB中掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P在邊長(zhǎng)為1的正方形ABCD的內(nèi)部,點(diǎn)P到邊AD、AB的距離分別為m、n.
(1)以A為原點(diǎn),以邊AB所在直線為x軸,建立平面直角坐標(biāo)系,如圖①所示,當(dāng)點(diǎn)P在對(duì)角線AC上,且m=時(shí),求點(diǎn)P的坐標(biāo);
(2)如圖②,當(dāng)m、n滿足什么條件時(shí),點(diǎn)P在△DAB的內(nèi)部?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若n是一個(gè)兩位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,則稱n為“兩位遞增數(shù)”(如13,35,56等).在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從由數(shù)字1,2,3,4,5,6構(gòu)成的所有的“兩位遞增數(shù)”中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.
(1)寫(xiě)出所有個(gè)位數(shù)字是5的“兩位遞增數(shù)”;
(2)請(qǐng)用列表法或樹(shù)狀圖,求抽取的“兩位遞增數(shù)”的個(gè)位數(shù)字與十位數(shù)字之積能被10整除的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為θ(0°<θ<180°),得到△A'B'C.
(1)如圖1,當(dāng)AB∥CB'時(shí),設(shè)A'B'與CB相交于點(diǎn)D,求證:△A'CD是等邊三角形.
(2)若E為AC的中點(diǎn),P為A'B'的中點(diǎn),則EP的最大值是多少,這時(shí)旋轉(zhuǎn)角θ為多少度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)在第二象限內(nèi)圖象上一點(diǎn),點(diǎn)B是反比例函數(shù)在第一象限內(nèi)圖象上一點(diǎn),直線AB與y軸交于點(diǎn)C,且AC=BC,連接OA、OB,則△AOB的面積是( 。
A. 2 B. 2.5 C. 3 D. 3.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com