【題目】如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),于點(diǎn)Q,過點(diǎn)B作半圓O的切線,交OQ的延長(zhǎng)線于點(diǎn)P,PA交半圓OR,則下列等式中正確的是(

A. B. C. D.

【答案】D

【解析】

1)由=,及AC=2OQ,AB=2OB,OB=OR可得,由AB≠AP,故A不正確.
2)連接OR,易得==2, 得到,故B不正確.
3)由OBP∽△OQB,即,由AQ≠OP,故C不正確.
4)連接AQ,易證OQB∽△OBP,得到=,也就有=,可得OAQOPA,從而有∠OAQ=APO.易證∠CAP=APO,從而有∠CAP=OAQ,則有∠CAQ=BAP,從而可證ACQ∽△ABP,可得,所以D正確.

解:(1)連接OR,如圖1,



AC=2OQ,AB=2OB,OB=OR,
,

AB≠AP,
,故A不正確.

2)如圖1所示.
OQBC,
BQ=CQ
AO=BO
OQ=AC
OR=AB
=,=2

,故B不正確.

3)連接AQ,如圖2


∵△OBP∽△OQB,
,


AQ≠OP
,故C不正確.

4)如圖2
BP與半圓O切于點(diǎn)B,AB是半圓O的直徑,
∴∠ABP=ACB=90°
OQBC
∴∠OQB=90°
∴∠OQB=OBP=90°
又∵∠BOQ=POB,
∴△OQB∽△OBP
=
OA=OB,
=
又∵∠AOQ=POA,
∴△OAQ∽△OPA
∴∠OAQ=APO
∵∠OQB=ACB=90°
ACOP
∴∠CAP=APO
∴∠CAP=OAQ
∴∠CAQ=BAP
∵∠ACQ=ABP=90°,
∴△ACQ∽△ABP

D正確.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖.D的邊上一點(diǎn),,于點(diǎn)M,.

1)求證:;

2)若,試判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公 司承接A、B兩貨物運(yùn)輸業(yè)務(wù),已知5月份A貨物運(yùn)費(fèi)單價(jià)為50元/噸,B貨物運(yùn)費(fèi)單價(jià)為30元/噸,共收取運(yùn)費(fèi)9500元;6月份由于油價(jià)上漲,運(yùn)費(fèi)單價(jià)上漲為:A貨物70元/噸,B貨物40元/噸;該物流公司6月承接的A貨物和B種數(shù)量5月份相同,6月份共收取運(yùn)費(fèi)13000元。

1該物流公司月運(yùn)輸兩種貨物各多少噸?

2該物流公司預(yù)計(jì)7月份運(yùn)輸這兩種貨物330噸,且A貨物的數(shù)量不大于B貨物的2倍,在運(yùn)費(fèi)單價(jià)與6月份相同的情況下,該物流公司7月份最多將收到多少運(yùn)輸費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在菱形, ,.點(diǎn)從點(diǎn)出發(fā)以每秒2個(gè)單位的速度沿邊向終點(diǎn)運(yùn)動(dòng),過點(diǎn)交邊于點(diǎn),過點(diǎn)向上作,且,以、為邊作矩形.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒),矩形與菱形重疊部分圖形的面積為.

1)用含的代數(shù)式表示線段的長(zhǎng).

2)當(dāng)點(diǎn)落在邊上時(shí),求的值.

3)當(dāng)時(shí),求之間的函數(shù)關(guān)系式,

4)如圖②,若點(diǎn)的中點(diǎn),作直線.當(dāng)直線將矩形分成兩部分圖形的面積比為時(shí),直接寫出的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是圓內(nèi)接等腰三角形,其中AB=AC,點(diǎn)P上運(yùn)動(dòng)(點(diǎn)P與點(diǎn)A在弦BC的兩側(cè)),連結(jié)PA,PB,PC,設(shè)∠BAC=α=y,小明為探究yα的變化情況,經(jīng)歷了如下過程

1)若點(diǎn)P在弧BC的中點(diǎn)處,α=60°時(shí),y的值是______

2)小明探究α變化獲得了一部分?jǐn)?shù)據(jù),請(qǐng)你填寫表格中空缺的數(shù)據(jù).在如圖2平面直角坐標(biāo)系中以表中各組對(duì)應(yīng)值為點(diǎn)的坐標(biāo)進(jìn)行描點(diǎn),并畫出函數(shù)圖象:

α

30°

60°

90°

120°

150°

170°

y

..

0.52

1.73

1.93

1.99

3)從圖象可知,y隨著α的變化情況是______;y的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線為常數(shù),且)與軸從左至右依次交于A,B兩點(diǎn),與軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線與拋物線的另一交點(diǎn)為D.

1)若點(diǎn)D的橫坐標(biāo)為-5,求拋物線的函數(shù)表達(dá)式;

2)若在第一象限的拋物線上有點(diǎn)P,使得以AB,P為頂點(diǎn)的三角形與△ABC相似,求的值;

3)在(1)的條件下,設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止. 當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù)

從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(jī)(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績(jī)

人數(shù)

部門

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(說明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

得出結(jié)論:

.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為____________;

.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_____________.(至少從兩個(gè)不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富校園文化,某校決定舉行學(xué)生趣味運(yùn)動(dòng)會(huì),將比賽項(xiàng)目確定為袋鼠跳,夾球跑,跳大繩,綁腿跑和拔河賽5項(xiàng),為了解學(xué)生對(duì)這5項(xiàng)運(yùn)動(dòng)的喜歡情況,隨機(jī)調(diào)查了該校部分學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇5項(xiàng)中的一種),并將調(diào)查結(jié)果繪制成如圖所示的不完整的統(tǒng)計(jì)圖表:

根據(jù)圖表中提供的信息解答下列問題:

1)求a,b的值.

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2500名學(xué)生中有多少名學(xué)生最喜歡綁腿跑.

學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表

部門

平均數(shù)

中位數(shù)

眾數(shù)

78.3

77.5

75

78

80.5

81

項(xiàng)目

學(xué)生數(shù)(名)

百分比(%

袋鼠跳

45

15

夾球跑

a

10

跳大繩

75

25

綁腿跑

b

20

拔河賽

90

30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

在綜合與實(shí)踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開展數(shù)學(xué)活動(dòng).如圖1,將矩形紙片沿對(duì)角線剪開,得到.并且量得,.

操作發(fā)現(xiàn):

(1)將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使,得到如圖2所示的,過點(diǎn)的平行線,與的延長(zhǎng)線交于點(diǎn),則四邊形的形狀是________.

(2)創(chuàng)新小組將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使、三點(diǎn)在同一條直線上,得到如圖3所示的,連接,取的中點(diǎn),連接并延長(zhǎng)至點(diǎn),使,連接,得到四邊形,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.

實(shí)踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點(diǎn)與點(diǎn)重合,此時(shí)點(diǎn)平移至點(diǎn),相交于點(diǎn),如圖4所示,連接,試求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案