【題目】開學(xué)前夕,某文具店準(zhǔn)備購進(jìn)AB兩種品牌的文具袋進(jìn)行銷售,若購進(jìn)A品牌文具袋和B品牌文具袋各5個共花費125元,購進(jìn)A品牌文具袋3個和B品牌文具袋各4個共花費90元.

1)求購進(jìn)A品牌文具袋和B品牌文具袋的單價;

2)若該文具店購進(jìn)了A,B兩種品牌的文具袋共100個,其中A品牌文具袋售價為12元,B品牌文具袋售價為23元,設(shè)購進(jìn)A品牌文具袋x個,獲得總利潤為y元.

y關(guān)于x的函數(shù)關(guān)系式;

要使銷售文具袋的利潤最大,且所獲利潤不超過進(jìn)貨價格的40%,請你幫該文具店設(shè)計一個進(jìn)貨方案,并求出其所獲利潤的最大值.

【答案】1)購進(jìn)A品牌文具袋的單價為10元,購進(jìn)B品牌文具袋的單價為15元;(2y8006x;購進(jìn)A品牌文具袋50個,B品牌文具袋50個時所獲利潤最大,利潤最大為500元.

【解析】

1)設(shè)購進(jìn)A品牌文具袋的單價為x元,購進(jìn)B品牌文具袋的單價為y元,列出方程組求解即可;

2)①把(1)得出的數(shù)據(jù)代入即可解答;

②根據(jù)題意可以得到x的取值范圍,然后根據(jù)一次函數(shù)的性質(zhì)即可求得w的最大值和相應(yīng)的進(jìn)貨方案.

解:(1)設(shè)購進(jìn)A品牌文具袋的單價為x元,購進(jìn)B品牌文具袋的單價為y元,根據(jù)題意得,

解得,

所以購進(jìn)A品牌文具袋的單價為10元,購進(jìn)B品牌文具袋的單價為15元;

2)①由題意可得,

y=(1210x+2315)(100x)=8006x;

②由題意可得,

6x+800≤40%[10x+15100x],

解得:x≥50,

又由(1)得:w=﹣6x+800k=﹣60,

wx的增大而減小,

∴當(dāng)x50時,w達(dá)到最大值,即最大利潤w=﹣50×6+800500元,

此時100x1005050個,

答:購進(jìn)A品牌文具袋50個,B品牌文具袋50個時所獲利潤最大,利潤最大為500元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是某火車站候車室前的自動扶梯,長為30m,坡角為37°,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin37°≈tan37°≈,sin65°≈,tan65°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABC中,∠ABC=90°,AB=BC,點D為線段BC上一動點(點D不與點B、C重合),點B關(guān)于直線AD的對稱點為E,作射線DE,過點CBC的垂線,交射線DE于點F,連接AE

1)依題意補全圖形;

2AEDF的位置關(guān)系是 ;

3)連接AF,小昊通過觀察、實驗,提出猜想:發(fā)現(xiàn)點D 在運動變化的過程中,∠DAF的度數(shù)始終保持不變,小昊把這個猜想與同學(xué)們進(jìn)行了交流,經(jīng)過測量,小昊猜想∠DAF= °,通過討論,形成了證明該猜想的兩種想法:

想法1:過點AAGCF于點G,構(gòu)造正方形ABCG,然后可證AFG≌△AFE……

想法2:過點BBGAF,交直線FC于點G,構(gòu)造ABGF,然后可證AFE≌△BGC……

請你參考上面的想法,幫助小昊完成證明(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=1,AD=2,點E是邊AD上的一個動點,把△BAE沿BE折疊,點A落在A′處,如果A′恰在矩形的對稱軸上,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《居民家庭親子閱讀消費調(diào)查報告》中的相關(guān)數(shù)據(jù)制成扇形統(tǒng)計圖,由圖可知,下列說法錯誤的是(

A.扇形統(tǒng)計圖能反映各部分在總體中所占的百分比

B.每天閱讀30分鐘以上的居民家庭孩子超過50%

C.每天閱讀1小時以上的居民家庭孩子占20%

D.每天閱讀30分鐘至1小時的居民家庭孩子對應(yīng)扇形的圓心角是108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個函數(shù),自變量xa時,函數(shù)值y也等于a,我們稱a為這個函數(shù)的不動點.如果二次函數(shù)yx2+2x+c有兩個相異的不動點x1x2,且x11x2,則c的取值范圍是( )

A. c<﹣3B. c<﹣2C. cD. c1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探究證明】

(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問題,請你給出證明.

如圖①,在矩形ABCD中,EFGHEF分別交AB,CD于點E,FGH分別交AD,BC于點GH.求證: ;

【結(jié)論應(yīng)用】

(2)如圖②,在滿足(1)的條件下,又AMBN,點M,N分別在邊BC,CD上,若,則的值為 ;

【聯(lián)系拓展】

(3)如圖③,四邊形ABCD中,∠ABC=90°,AB=AD=10BC=CD=5,AMDN,點M,N分別在邊BC,AB上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接體育理化加試,九(2)班同學(xué)到某體育用品商店采購訓(xùn)練用球,已知購買3A品牌足球和2B品牌足球需付210元;購買2A品牌足球和1B品牌足球需付費130元.(優(yōu)惠措施見海報)巨惠來襲(解釋權(quán)歸本店所有)

A品牌

B品牌

單品數(shù)量低于40個不優(yōu)惠,高于40

8折優(yōu)惠

單品數(shù)量低于40個不優(yōu)惠,高于40

9折優(yōu)惠

1)求A,B兩品牌足球的單價各為多少元?

2)為享受優(yōu)惠,同學(xué)們決定購買一次性購買足球60個,若要求A品牌足球的數(shù)量不低于B品牌足球數(shù)量的3倍,請你設(shè)計一種付費最少的方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點和點,與軸交于點,點坐標(biāo)為,點坐標(biāo)為,點是拋物線的頂點,過點軸的垂線,垂足為,連接

1)求拋物線的解析式及點的坐標(biāo);

2)點是拋物線上的動點,當(dāng)時,求點的坐標(biāo);

3)若點軸上方拋物線上的動點,以為邊作正方形,隨著點的運動,正方形的大小、位置也隨著改變,當(dāng)頂點恰好落在軸上時,請直接寫出點的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案