【題目】利用計(jì)算器求值(精確到0.0001):tan27°15′+cos63°42′=

【答案】0.9581
【解析】tan27°15′+cos63°42′=tan27.25°+cos63.7°≈0.5150+0.4431≈0.9581.
直接利用計(jì)算器計(jì)算即可.注意把度分秒化為度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,∠MON=90°,點(diǎn)A、B分別在OM、ON上運(yùn)動(dòng)(不與點(diǎn)O重合).
(1)若BC是∠ABN的平分線,BC的反方向延長(zhǎng)線與∠BAO的平分線交與點(diǎn)D. ①若∠BAO=60°,則∠D=°.
②猜想:∠D的度數(shù)是否隨A,B的移動(dòng)發(fā)生變化?并說明理由
(2)若∠ABC= ∠ABN,∠BAD= ∠BAO,則∠D=°.
(3)若將“∠MON=90°”改為“∠MON=α(0°<α<180°)”,∠ABC= ∠ABN,∠BAD= ∠BAO,其余條件不變,則∠D=°(用含α、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,點(diǎn)ECB的延長(zhǎng)線上,連結(jié)AC、AEACB=BAE=45°

1)求證:AE是⊙O的切線;

2)若AB=AD,AC=,tanADC=3,BE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,連接四邊形ABCD各邊中點(diǎn),得到四邊形EFGH,還要添加 條件,才能保證四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,E在BC上,BE=2,CE=1.點(diǎn)P在BD上,則PE與PC的和的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

(3)求彈珠離開軌道時(shí)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小虎同學(xué)在計(jì)算a+2cos60°時(shí),因?yàn)榇中陌选?”看成“-”,結(jié)果得2006,那么計(jì)算a+2cos60°的正確結(jié)果應(yīng)為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知小正方形的邊長(zhǎng)為2厘米,大正方形的邊長(zhǎng)為4厘米,起始狀態(tài)如圖所示,大正方形固定不動(dòng),把小正方形以1厘米∕秒的速度向右沿直線平移,設(shè)平移的時(shí)間為t秒,兩個(gè)正方形重疊部分的面積為S平方厘米.完成下列問題:
(1)當(dāng)t=1.5秒時(shí),S=平方厘米;
(2)當(dāng)S=2時(shí),小正方形平移的時(shí)間為秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案