【題目】如圖,在ABCD中,BC=2AB=4,點(diǎn)E,F分別是BC,AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)當(dāng)四邊形AECF為菱形時(shí),求出該菱形的面積.
【答案】見試題解析
【解析】
試題(1)由□ABCD可得AB=CD,BC=AD,∠ABC=∠CDA,再結(jié)合點(diǎn)E、F分別是BC、AD的中點(diǎn)即可證得結(jié)論;
(2)當(dāng)四邊形AECF為菱形時(shí),可得△ABE為等邊三角形,根據(jù)等邊三角形的性質(zhì)即可求得結(jié)果。
∵在□ABCD中,AB=CD,
∴BC=AD,∠ABC=∠CDA.
又∵BE=EC=BC,AF=DF=AD,
∴BE=DF.
∴△ABE≌△CDF.
(2)當(dāng)四邊形AECF為菱形時(shí),△ABE為等邊三角形,
四邊形ABCD的高為,
∴菱形AECF的面積為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計(jì)算出a、b、c的值;
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績較好?
(3)計(jì)算初中代表隊(duì)決賽成績的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12;第2次輸出的結(jié)果是6;依次繼續(xù)下去……第2018次輸出的結(jié)果是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB:y=5x﹣5與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)B關(guān)于原點(diǎn)O對稱,拋物線y=ax2+bx+c的對稱軸為直線x=3且過點(diǎn)A和C.
(1)求點(diǎn)A和點(diǎn)C的坐標(biāo);
(2)求拋物線y=ax2+bx+c的解析式;
(3)若拋物線y=ax2+bx+c的頂點(diǎn)為D,且在x軸上存在點(diǎn)P使得△DAP的面積為6,直接寫出滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)
(2)5+(﹣ )﹣7﹣(﹣2.5)
(3)(﹣)×(﹣)+(﹣)×(+)
(4)
(5)8﹣23÷(﹣4)3+
(6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.
求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,MN是⊙O的直徑,作AB⊥MN,垂足為點(diǎn)D,連接AM,AN,點(diǎn)C為 上一點(diǎn),且 = ,連接CM,交AB于點(diǎn)E,交AN于點(diǎn)F,現(xiàn)給出以下結(jié)論: ①AD=BD;②∠MAN=90°;③ = ;④∠ACM+∠ANM=∠MOB;⑤AE= MF.
其中正確結(jié)論的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和A′B′C重合放置,其中∠C=90°,∠B=∠B′=30°,AC=AC′=2.
(1)如圖2,固定△ABC,將△A′B′C繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)A′恰好落在AB邊上時(shí),
①∠CA′B′=;旋轉(zhuǎn)角ɑ=(0°<ɑ<90°),線段A′B′與AC的位置關(guān)系是;
(2)②設(shè)△A′BC的面積為S1 , △AB′C的面積為S2 , 則S1與S2的數(shù)量關(guān)系是什么?證明你的結(jié)論;
(3)如圖3,∠MON=60°,OP平分∠MON,OP=PN=4,PQ∥MO交ON于點(diǎn)Q.若在射線OM上存在點(diǎn)F,使S△PNF=S△OPQ , 請直接寫出相應(yīng)的OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某發(fā)電廠共有6臺發(fā)電機(jī)發(fā)電,每臺的發(fā)電量為300萬千瓦/月.該廠計(jì)劃從今年7月開始到年底,對6臺發(fā)電機(jī)各進(jìn)行一次改造升級.每月改造升級1臺,這臺發(fā)電機(jī)當(dāng)月停機(jī),并于次月再投入發(fā)電,每臺發(fā)電機(jī)改造升級后,每月的發(fā)電量將比原來提高20%.已知每臺發(fā)電機(jī)改造升級的費(fèi)用為20萬元.將今年7月份作為第1個(gè)月開始往后算,該廠第x(x是正整數(shù))個(gè)月的發(fā)電量設(shè)為y(萬千瓦).
(1)求該廠第2個(gè)月的發(fā)電量及今年下半年的總發(fā)電量;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)如果每發(fā)1千瓦電可以盈利0.04元,那么從第1個(gè)月開始,至少要到第幾個(gè)月,這期間該廠的發(fā)電盈利扣除發(fā)電機(jī)改造升級費(fèi)用后的盈利總額ω1(萬元),將超過同樣時(shí)間內(nèi)發(fā)電機(jī)不作改造升級時(shí)的發(fā)電盈利總額ω2(萬元)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com