【題目】為了豐富學(xué)生課外小組活動,培養(yǎng)學(xué)生動手操作能力,王老師讓學(xué)生把5m長的彩繩截成2m或1m的彩繩,用來做手工編織,在不造成浪費(fèi)的前提下,你有幾種不同的截法( 。
A.1
B.2
C.3
D.4
【答案】C
【解析】解:截下來的符合條件的彩繩長度之和剛好等于總長5米時(shí),不造成浪費(fèi),
設(shè)截成2米長的彩繩x根,1米長的y根,
由題意得,2x+y=5,
因?yàn)閤,y都是正整數(shù),所以符合條件的解為:
、 、 ,
則共有3種不同截法,
故選:C.
截下來的符合條件的彩繩長度之和剛好等于總長9米時(shí),不造成浪費(fèi),設(shè)截成2米長的彩繩x根,1米長的y根,由題意得到關(guān)于x與y的方程,求出方程的正整數(shù)解即可得到結(jié)果.此題考查了二元一次方程的應(yīng)用,弄清題意列出方程是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定了每月用水18立方米以內(nèi)(含18立方米)和用水18立方米以上兩種不同的收費(fèi)標(biāo)準(zhǔn),該市的用戶每月應(yīng)交水費(fèi)y(元)是用水量x(立方米)的函數(shù),其圖象如圖所示.
(1)若某月用水量為18立方米,則應(yīng)交水費(fèi)多少元?
(2)求當(dāng)x>18時(shí),y關(guān)于x的函數(shù)表達(dá)式,若小敏家某月交水費(fèi)81元,則這個(gè)月用水量為多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點(diǎn),延長AE交BC的延長線于點(diǎn)F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC=BC=6.點(diǎn)P射線BA上一點(diǎn),點(diǎn)Q是AC的延長線上一點(diǎn),且BP=CQ,連接PQ,與直線BC相交于點(diǎn)D.
(1)如圖①,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),求CD的長;
(2)如圖②,過點(diǎn)P作直線BC的垂線,垂足為E,當(dāng)點(diǎn)P,Q分別在射線BA和AC的延長線上任意地移動過程中,線段BE,DE,CD中是否存在長度保持不變的線段?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,BC=6cm.射線 AG∥BC,點(diǎn) E 從點(diǎn) A 出發(fā)沿射線 AG 以 2cm/s 的速度運(yùn)動,當(dāng)點(diǎn) E 先出發(fā) 1s 后,點(diǎn) F 也從點(diǎn) B 出發(fā)沿射線 BC 以 cm/s 的速度運(yùn)動,分別連結(jié) AF,CE.設(shè)點(diǎn) F 運(yùn)動時(shí)間為 t(s),其中 t>0.
(1)當(dāng) t 為何值時(shí),∠BAF<∠BAC;
(2)當(dāng) t 為何值時(shí),AE=CF;
(3)當(dāng) t 為何值時(shí),S△ABF+S△ACE<S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1 , 點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),再將△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2 , 點(diǎn)A1的對應(yīng)點(diǎn)為點(diǎn)A2 .
(1)畫出△A1B1C1;
(2)畫出△A2B2C2;
(3)求出在這兩次變換過程中,點(diǎn)A經(jīng)過點(diǎn)A1到達(dá)A2的路徑總長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組:.
請結(jié)合題意,完成本題的解答.
(1)解不等式①,得 ,依據(jù)是: .
(2)解不等式③,得 .
(3)把不等式①,②和③的解集在數(shù)軸上表示出來.
(4)從圖中可以找出三個(gè)不等式解集的公共部分,得不等式組的解集 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E,F,G,H分別是四邊形ABCD的邊AB,BC,CD,AD的中點(diǎn).
(1)當(dāng)四邊形ABCD是矩形時(shí),四邊形EFGH是_________,請說明理由;
(2)當(dāng)四邊形ABCD滿足什么條件時(shí),四邊形EFGH為正方形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一副直角三角板放在同一條直線AB上,其中,.
將圖1中的三角尺OCD沿AB的方向平移至圖的位置,使得點(diǎn)O與點(diǎn)N重合,CD與MN相交于點(diǎn)E,求的度數(shù);
將圖1中的三角尺OCD繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn),使一邊OD在的內(nèi)部,如圖3,且OD恰好平分,CD與MN相交于點(diǎn)E,求的度數(shù);
將圖1中的三角尺OCD繞點(diǎn)O按每秒的速度沿順時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第______ 秒時(shí),邊CD恰好與邊MN平行;在第______ 秒時(shí),直線CD恰好與直線MN垂直直接寫出結(jié)果
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com