【題目】操作與探究

圖(1)

定義:三邊長和面積都是整數(shù)的三角形稱為“整數(shù)三角形”.

數(shù)學(xué)學(xué)習(xí)小組的同學(xué)從32根等長的火柴棒(每根長度記為1個單位)中取出若干根,首尾依次相接組成三角形,進行探究活動.

小東用12根火柴棒,擺成如圖所示的“整數(shù)三角形”;

小穎分用24根火柴棒擺出直角“整數(shù)三角形”;

小軍受到小東、小穎的啟發(fā),用30根火柴棒擺出直角“整數(shù)三角形”;

(1)請你畫出小穎和小軍擺出的直角“整數(shù)三角形”的示意圖;

(2)你能否也從中取出若干根,按下列要求擺出“整數(shù)三角形”,如果能,請畫出示意圖;如果不能,請說明理由.

①擺出一個等腰“整數(shù)三角形”;

②擺出一個非特殊(既非直角三角形,也非等腰三角形)“整數(shù)三角形”.

【答案】(1)小穎擺出直角“整數(shù)三角形”三邊為6,8,10;小軍擺出的直角“整數(shù)三角形”三邊為5,12,13.(2)①詳見解析;②詳見解析.

【解析】

(1)利用勾股定理求出6,8,105,12,13符合要求,即可得出答案;

(2)要擺出等腰整數(shù)三角形,需保證三邊長和面積都是整數(shù),由三線合一可知,等腰三角形的一半是直角三角形,即畫出直角三角形后再補充完整的等腰三角形;

(3)擺出一個非特殊整數(shù)三角形:要擺出整數(shù)三角形,需使三角形的底與高均為整數(shù),可將兩個直角三角形進行組合,常見的等高直角三角形有:6、8、108、15、17;9、12、155、12、13.

(1)如圖1,

小穎擺出直角整數(shù)三角形三邊為6,8,10;

小軍擺出的直角整數(shù)三角形三邊為5,12,13.

(2)擺出如圖2所示三個不同的等腰整數(shù)三角形”:

(3)擺出如圖3所示一個非特殊整數(shù)三角形”:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是半徑為3的圓形紙片的圓心,將這個圓形紙片按下列順序折疊,使 都經(jīng)過圓心O,則陰影部分面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點E是邊AC的中點,問在點M運動的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校有一塊三角形草坪,數(shù)學(xué)課外小組的同學(xué)測得其三邊的長分別為AB=200米,AC=160米,BC=120米.

(1)小明根據(jù)測量的數(shù)據(jù),猜想△ABC是直角三角形,請判斷他的猜想是否正確,并說明理由;

(2)若計劃修一條從點CBA邊的小路CH,使CHAB于點H,求小路CH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形ABC的底邊長BC=20cm,DAC上的一點,且BD=16cm,CD=12cm

1)求證:BDAC

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1)∠B+BDC=180°;(2)∠1=2;(3∠3=∠4;(4∠B=∠5

A.1B.2C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD被直線EF所截,如果要添加條件,使得MQ∥NP,那么下列條件中能判定MQ∥NP的是( )

A. ∠1∠2 B. ∠BMF∠DNF

C. ∠AMQ∠CNP D. ∠1∠2,∠BMF∠DNF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.

(1)求拋物線的解析式;
(2)若直線BC的函數(shù)解析式為y’=kx+b,求當(dāng)滿足y<y’時,自變量x的取值范圍.
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是兩個全等的三角形,.現(xiàn)將按如圖所示的方式疊放在一起,保持不動,運動,且滿足:點E在邊BC上運動(不與點B,C重合),且邊DE始終經(jīng)過點A,EFAC交于點M .

(1)求證:∠BAE=MEC;

(2)當(dāng)EBC中點時,請求出MEMF的值;

(3)在的運動過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由

查看答案和解析>>

同步練習(xí)冊答案