【題目】如圖,在△ABC中,∠BAC=90°,AB=8,AC=6,M為BC上的一動(dòng)點(diǎn),ME⊥AB于E,MF⊥AC于F,N為EF的中點(diǎn),則MN的最小值為( 。
A. 4.8B. 2.4C. 2.5D. 2.6
【答案】B
【解析】
過(guò)點(diǎn)A作AM⊥BC于點(diǎn)M′,利用勾股定理求BC,根據(jù)面積公式求AM,四邊形AEMF是矩形,得AM=EF,MN= AM;根據(jù)當(dāng)MN最小時(shí),AM最短,此時(shí)點(diǎn)M與M′重合,可求解.
過(guò)點(diǎn)A作AM⊥BC于點(diǎn)M′,
∵在△ABC中,∠BAC=90°,AB=8,AC=6,
.
∵ME⊥AB于E,MF⊥AC于F,
∴四邊形AEMF是矩形,
∴AM=EF,MN= AM,
∴當(dāng)MN最小時(shí),AM最短,此時(shí)點(diǎn)M與M′重合,
∴MN=
AM′= =2.4.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列解題過(guò)程,然后解答問(wèn)題(1)、(2)
解方程:|x+3|=2.
當(dāng)x+30時(shí),原方程可化為:x+3=2,解得x=1;
當(dāng)x+3<0時(shí),原方程可化為:x+3=2,解得x=5.
所以原方程的解是x=1,x=5.
(1)解方程:|3x1|5=0;
(2)探究:當(dāng)b為何值時(shí),方程|x2|=b+1①無(wú)解;②只有一個(gè)解;③有兩個(gè)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)從A地駛向B地,并以各自的速度勻速行駛,甲車(chē)比乙車(chē)早行駛2h,并且甲車(chē)途中休息了0.5h,如圖是甲乙兩車(chē)行駛的距離y(km)與時(shí)間x(h)的函數(shù)圖象.
(1)直接寫(xiě)出圖中m,a的值;
(2)求出甲車(chē)行駛路程y(km)與時(shí)間x (h)的函數(shù)解析式,并寫(xiě)出相應(yīng)的x的取值范圍;
(3)當(dāng)乙車(chē)出發(fā)多長(zhǎng)時(shí)間后,兩車(chē)恰好相距40km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象過(guò)點(diǎn)(0,2),且與兩坐標(biāo)軸圍成的三角形面積為2,求此一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過(guò)點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以lcm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),試判定四邊形AFCE的形狀并說(shuō)明理由;
(2)當(dāng)t為多少時(shí),四邊形ACFE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c所表示的數(shù)在數(shù)軸上的位置如圖所示:
(1)化簡(jiǎn):│a-1│-│c+b│+│b-1│;
(2)若a+b+c=0,且b與-1的距離和c與-1的距離相等,求:-a2+2b-c-(a-4c-b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市電話撥號(hào)上網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一:
:計(jì)時(shí)制:0. 03元/分. :38元/月(限一部個(gè)人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費(fèi)0. 01元/分. 某用戶某月上網(wǎng)時(shí)間為小時(shí),
(1)若按照方式收費(fèi)為_____元(用含的代數(shù)式表示),若按照方式收費(fèi)為_____元(用含的代數(shù)式表示);
(2)若小時(shí),通過(guò)計(jì)算采用哪種方式較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.如圖,矩形ABCD中,O為AC中點(diǎn),過(guò)點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com