精英家教網(wǎng)如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是
 
分析:在△AOH中,因為∠AOH=30°,所以A的縱坐標是橫坐標的
3
倍,若設A的坐標為(
3
t,t),則Q、P點坐標均可求出,然后根據(jù)全等三角形的判定,對應求解即可.
解答:解:由題可得A的橫坐標是縱坐標的
3
倍,故設A的坐標為(
3
t,t);
則Q的坐標為(0,2t)或(0,
3
t);
可求得P點對應的坐標,解可得t的值有4個,為
3
,
1
3
,2,
2
3
;
故點A的坐標是(3,
3
)、(
1
3
3
,
1
3
)、(2
3
,2)、(
2
3
3
,
2
3
).
點評:本題考查二次函數(shù)的有關性質(zhì),涉及圖象與點的坐標的求法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取點A,過點A作AH⊥x軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A有
 
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取一點A,過點A作AH⊥x軸于點H,得到△AOH.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點的三角形△POQ與△AOH全等,則符合條件的△AOH的面積是
3
2
3
,2
3
,
1
18
3
2
9
3
3
2
3
,2
3
1
18
3
,
2
9
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點,且以點Q為直角頂點的三角形與△AOH全等,則符合條件的點A的坐標是
(3,
3
),(
1
3
3
,
1
3
(3,
3
),(
1
3
3
,
1
3

查看答案和解析>>

同步練習冊答案