26、在△ABC中,AB=AC,∠BAC=120°,P為BC的中點(diǎn),小明拿著含有30°角的透明直角三角板,使30°角的頂點(diǎn)落在點(diǎn)P上,三角板繞P點(diǎn)旋轉(zhuǎn).
(1)如圖1,當(dāng)三角板的一直角邊和斜邊分別與AB、BC交于點(diǎn)E、F時(shí),連接EF,請(qǐng)說明△BPE∽△CFP;
(2)操作:將三角板繞點(diǎn)P旋轉(zhuǎn)到圖2情形時(shí),三角板的兩邊分別交BA的延長線、邊AC于點(diǎn)E、F,連接EF.
①探究1:△BPE與△CFP相似嗎?請(qǐng)說明理由;
②探究2:△BPE與△PFE相似嗎?請(qǐng)說明理由.
分析:(1)找出△BPE與△CFP的對(duì)應(yīng)角,其中∠BPE+∠CPF=150°,∠CPF+∠CFP=150°,得出∠BPE=∠CFP,從而解決問題;
(2)①小題同前可證,②小題可通過對(duì)應(yīng)邊成比例證明.
解答:證明:(1)∵在△ABC中,∠BAC=120°,AB=AC,
∴∠B=∠C=30°.
∵∠B+∠BPE+∠BEP=180°,
∴∠BPE+∠BEP=150°,
∴∠EPF=30°,
又∵∠BPE+∠EPF+∠CPF=180°,
∴∠BPE+∠CPF=150°,
∴∠BEP=∠CPF,
∴△BPE∽△CFP(兩角對(duì)應(yīng)相等的兩個(gè)三角形相似).
(2)①△BPE∽△CFP;
②△BPE與△PFE相似.
下面證明結(jié)論:
同(1),可證△BPE∽△CFP,得 CPBE=PFPE,而CP=BP,因此 BPBE=PFPE.
又因?yàn)椤螮BP=∠EPF,所以△BPE∽△PFE(兩邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似).
點(diǎn)評(píng):這是一道操作探究題,它考查了相似三角形的判定.它以每位學(xué)生都有的30°三角板在圖形上的運(yùn)動(dòng)為背景,既考查了學(xué)生圖形旋轉(zhuǎn)變換的思想,靜中思動(dòng),動(dòng)中求靜的思維方法,又考查了學(xué)生動(dòng)手實(shí)踐、自主探究的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案