【題目】求出符合條件的二次函數(shù)解析式:
(1)二次函數(shù)圖象經(jīng)過點(﹣1,0),(1,2),(0,3);
(2)二次函數(shù)圖象的頂點坐標(biāo)為(﹣3,6),且經(jīng)過點(﹣2,10);
(3)二次函數(shù)圖象與x軸的交點坐標(biāo)為(﹣1,0),(3,0),與y軸交點的縱坐標(biāo)為9.
【答案】(1)y=﹣2x2+x+3(2)y=4(x+3)2+6(3)y=﹣3x2+6x+9
【解析】試題分析:(1)設(shè)一般式y=ax2+bx+c,再把三個點的坐標(biāo)代入得到關(guān)于a、b、c的方程組,然后解方程組求出a、b、c的值即可;
(2)由于已知頂點坐標(biāo),則可設(shè)頂點式y=a(x+3)2+6,然后把(-2,10)代入求出a即可;
(3)由于已知拋物線與x軸的兩交點坐標(biāo),則可設(shè)交點式y=a(x+1)(x-3),然后把(0,9)代入求出a即可.
解:(1)設(shè)二次函數(shù)解析式為y=ax2+bx+c,
根據(jù)題意得,解得,
所以二次函數(shù)解析式為y=﹣2x2+x+3;
(2)二次函數(shù)解析式為y=a(x+3)2+6,
把(﹣2,10)代入得a×(﹣2+3)2+6=10,解得a=4,
所以二次函數(shù)解析式為y=4(x+3)2+6;
(3)設(shè)二次函數(shù)解析式為y=a(x+1)(x﹣3),
把(0,9)代入得a×1×(﹣3)=9,解得a=﹣3,
所以二次函數(shù)解析式為y=﹣3(x+1)(x﹣3)=﹣3x2+6x+9.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上的一點,DE⊥AB,DF⊥AC,垂足分別是E、F,EF∥BC.
(1)求證:△BDE≌△CDF;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的頂點坐標(biāo)分別為 A(1,1),B(1,-1),C(-1,-1),D(-1,1),y軸上有一點 P(0,2).作點P關(guān)于點A的對稱點P1,作點P1關(guān)于點B的對稱點P2,作點P2關(guān)于點C的對稱軸P3,作點P3關(guān)于點D的對稱點P4,作點P4關(guān)于點A的對稱點P5,作點P5關(guān)于點B的對稱點P6,…,按此操作下去,則點P2016的坐標(biāo)為( )
A. (0,2) B. (2,0) C. (0,-2) D. (-2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,過點O作DE∥BC,與AB、AC分別交于點D、E.
(1)求證:BD+CE=DE;
(2)若∠BAC=70,求∠BOC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形ABC中,∠C=90°,點O為AB上的一點,以點O為圓心,OA為半徑的圓弧與BC相切于點D,交AC于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)已知AE=2,DC=,求圓弧的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(m>0)與x軸交于A、B兩點.
(1)求證:拋物線的對稱軸在y軸的左側(cè);
(2)若(O為坐標(biāo)原點),求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點C,若△ABC是直角三角形.求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.
(1)如圖1,若點D與圓心O重合,AC=2,求⊙O的半徑r;
(2)如圖2,若點D與圓心O不重合,∠BAC=25°,求∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
紅星中學(xué)根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地參加社會實踐活動,設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
車輛數(shù)(輛) | 載客量(人) | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保證租車費用不超過1900元,求x的最大值;
(3)在(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com