如果關(guān)于x的一元二次方程2x2+3x+5m=0的兩個(gè)實(shí)數(shù)根都小于1,那么實(shí)數(shù)m的取值范圍是
 
分析:先根據(jù)題意求得m的取值,再根據(jù)關(guān)于x的一元二次方程2x2+3x+5m=0的兩個(gè)實(shí)數(shù)根都小于1,得x<1,m>-1,從而得出實(shí)數(shù)m的取值范圍.
解答:解:△=9-40m≥0,∴m≤
9
40

方法一:x=<1,∴m>-1
方法二:記y=f(x)=2x2+3x+5m,
∴由
a=2>0
x=-
b
2a
=-
3
4
<1得m>-1
f(1)=5+5m>0

由①②得:-1<m≤
9
40

故答案為-1<m≤
9
40
點(diǎn)評(píng):本題考查了一元二次方程根的判別式以及拋物線(xiàn)與x軸的交點(diǎn)問(wèn)題,是中考?jí)狠S題,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1.⑴ 求出一元二次函數(shù)的關(guān)系式;

2.⑵點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn),垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

3.⑶ 探索線(xiàn)段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

【小題1】⑴ 求出一元二次函數(shù)的關(guān)系式;
【小題2】⑵ 點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn),垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
【小題3】⑶ 探索線(xiàn)段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年山東省東營(yíng)市學(xué)業(yè)水平模擬考試數(shù)學(xué)卷 題型:解答題

(12分)如圖,已知關(guān)于的一元二次函數(shù))的圖象與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為

1.⑴ 求出一元二次函數(shù)的關(guān)系式;

2.⑵點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線(xiàn),垂足為.若,的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

3.⑶ 探索線(xiàn)段上是否存在點(diǎn),使得為直角三角形,如果存在,求出的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中的二次項(xiàng)系數(shù)與常數(shù)項(xiàng)之和等于一次項(xiàng)系數(shù),求證:-1必是該方程的一個(gè)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案