【題目】如圖,ABC BAC=9 0°,AB=3,AC=4,點(diǎn) D BC 的中點(diǎn),ABD 沿 AD 翻折得到AED, CE,則線段 CE 的長(zhǎng)等于

A. 2 B. C. D.

【答案】D

【解析】

如圖連接 BE AD O, AHBC H.首先證明 AD 垂直平分線段

BE,BCE 是直角三角形,求出 BC、BE, RtBCE ,利用勾股定理即可解決問(wèn)題

如圖連接 BE AD O, AHBC H,

RtABC ,AC=4,AB=3,

BC==5,

CD=DB,

AD=DC=DB= ,

BCAH= ABAC,

AH=

AE=AB,

∴點(diǎn)ABE的垂直平分線上

DE=DB=DC,

∴點(diǎn)DBE的垂直平分線上,BCE是直角三角形,

AD垂直平分線段BE,

ADBO= BDAH,

OB=

BE=2OB=,

RtBCE 中,EC==,

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,是邊上一點(diǎn),以為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在的延長(zhǎng)線上取點(diǎn),使得,交于點(diǎn)

(1)判斷直線的位置關(guān)系,并說(shuō)明理由;

(2)OA=4, ∠A=30°,求圖中線段DG、線段EG與弧DE圍成陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:如圖 1,在ABC 中,若 AB5,AC3,求 BC 邊上的中線 AD 的取值范圍. 小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng) AD E,使得 DEAD,再連接 BE(或?qū)?/span>ACD 繞點(diǎn) D 逆時(shí)針旋轉(zhuǎn) 180°得到EBD),把 AB、AC、2AD 集中在ABE 中, 利用三角形的三邊關(guān)系可得 2AE8,則 1AD4

(感悟)解題時(shí),條件中若出現(xiàn)中點(diǎn)、中線字樣,可以考慮構(gòu)造以中點(diǎn)為對(duì)稱中心的中 心對(duì)稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形中.

(解決問(wèn)題)受到(1)的啟發(fā),請(qǐng)你證明下列命題:如圖 2,在ABC 中,D BC 邊上的中點(diǎn), DEDFDE AB 于點(diǎn) E,DF AC 于點(diǎn) F,連接 EF

1)求證:BECFEF,

2)若∠A90°,探索線段 BECFEF 之間的等量關(guān)系,并加以證明.、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫(huà)樹(shù)狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的從長(zhǎng)方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長(zhǎng)方形面積相等(如圖所示)這一推論,他從這一推論出發(fā),利用出入相補(bǔ)原理復(fù)原了《海島算經(jīng)》九題古證,根據(jù)圖形可知他得出的這個(gè)推論指(

A. S矩形ABMNS矩形MNDCB. S矩形EBMFS矩形AEFN

C. S矩形AEFNS矩形MNDCD. S矩形EBMFS矩形NFGD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,點(diǎn)分別是的中點(diǎn),分別是的中點(diǎn),滿足什么條件時(shí),四邊形是菱形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班50名學(xué)生期末考試數(shù)學(xué)成績(jī)(單位:分)的頻率分布條形圖如圖所示,其中數(shù)據(jù)不在分點(diǎn)上,對(duì)圖中提供的信息作出如下的判斷:

(1)成績(jī)?cè)?/span>49.5分~59.5分段的人數(shù)與89.5分~100分段的人數(shù)相等;

(2)成績(jī)?cè)?/span>79.5~89.5分段的人數(shù)占30%;

(3)成績(jī)?cè)?/span>79.5分以上的學(xué)生有20人;

(4)本次考試成績(jī)的中位數(shù)落在69.5~79.5分段內(nèi).

其中正確的判斷有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b(k≠0)和反比例函數(shù)y(m≠0)分別交于點(diǎn)A(4,1),B(1,a)

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOB的面積;

(3)根據(jù)圖象直接寫(xiě)出kx+bx的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,數(shù)學(xué)老師出示了如下題目:

如圖①,在四邊形中,是邊的中點(diǎn),的平分線,

求證:

小聰同學(xué)發(fā)現(xiàn)以下兩種方法:

方法1:如圖②,延長(zhǎng)、交于點(diǎn)

方法2:如圖③,在上取一點(diǎn),使,連接、

1)請(qǐng)你任選一種方法寫(xiě)出這道題的完整的證明過(guò)程;

2)如圖④,在四邊形中,的平分線,是邊的中點(diǎn),,,求證:

      

查看答案和解析>>

同步練習(xí)冊(cè)答案