【題目】如圖,平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn)、,點(diǎn)是第一象限的點(diǎn)且,過點(diǎn)作軸,垂足為,.
(1)求直線的解析式和點(diǎn)的坐標(biāo);
(2)試說明:;
(3)若點(diǎn)是直線上的一個動點(diǎn),在軸上存在另一個點(diǎn),且以、、、為頂點(diǎn)的四邊形是平行四邊形,請直接寫出點(diǎn)的坐標(biāo).
【答案】(1),;(2)詳見解析;(3),,
【解析】
(1)將A、B坐標(biāo)代入可得直線解析式,設(shè)B(1,m),由得1+m2=5,解之可得答案;
(2)利用邊角邊證明△AOD與△OCB全等,從而得到∠OAD=∠COB,根據(jù)∠COB+∠AOB=90°可得∠OAD+∠AOB=90°,從而得到∠AEO=90°,得證;
(3)根據(jù)平行四邊形的對邊平行且相等可得BM∥AN且BM=AN,令y=2求出點(diǎn)M的坐標(biāo),從而得到BM的長度,再分點(diǎn)N在點(diǎn)O的左邊與右邊、點(diǎn)N關(guān)于A的對稱點(diǎn)三種情況討論求出點(diǎn)N的坐標(biāo).
解:(1)把,代入
得解得
∴解析式為
∵,軸
設(shè)
∵,
∴,(負(fù)值舍去)
∴;
(2)∵,,,
∴,
∵
∴
∴
∵
∴
∴∠AEO=90°,
∴;
(3)∵點(diǎn)N在x軸上,O、B、M、N為頂點(diǎn)的四邊形是平行四邊形,
∴BM∥x軸,且BM=ON,
根據(jù)(1),點(diǎn)B的坐標(biāo)為(1,2),
∴-x+1=2,
解得x=-2,
∴點(diǎn)M的坐標(biāo)為(-2,2),
∴BM=1-(-2)=1+2=3,
①點(diǎn)N在點(diǎn)O的左邊時,ON=BM=3,
∴點(diǎn)N的坐標(biāo)為(-3,0),
②點(diǎn)N在點(diǎn)O的右邊時,ON=BM=3,
∴點(diǎn)N的坐標(biāo)為(3,0),
③作N(-3,0)關(guān)于A對稱的點(diǎn)N′,則N′也符合,
點(diǎn)N′的坐標(biāo)是(7,0),
綜上所述,點(diǎn)N的坐標(biāo)為(-3,0)或(3,0)或(7,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1, 4)和(4, 4),拋物線的頂點(diǎn)在線段AB上運(yùn)動,與x軸交于C、D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為-3,則點(diǎn)D的橫坐標(biāo)最大值為_______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有 .(把你認(rèn)為正確的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=8cm,對角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別從B、C兩點(diǎn)同時出發(fā),以1cm/s的速度沿BC、CD運(yùn)動,到點(diǎn)C、D時停止運(yùn)動,設(shè)運(yùn)動時間為t(s),△OEF的面積為S(cm2),則S(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有三個點(diǎn)A、B、C,它們可以沿著數(shù)軸左右移動,請回答:
(1)將點(diǎn)B向右移動三個單位長度后到達(dá)點(diǎn)D,點(diǎn)D表示的數(shù)是 ;
(2)移動點(diǎn)A到達(dá)點(diǎn)E,使B、C、E三點(diǎn)的其中任意一點(diǎn)為連接另外兩點(diǎn)之間線段的中點(diǎn),請你直接寫出所有點(diǎn)A移動的距離和方向;
(3)若A、B、C三個點(diǎn)移動后得到三個互不相等的有理數(shù),它們既可以表示為1,,的形式,又可以表示為0,,的形式,試求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2﹣4x+4沿y軸向下平移9個單位,所得新拋物線與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)為D.求:(1)點(diǎn)B、C、D坐標(biāo);(2)△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場出售一批進(jìn)價為2元的賀卡,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價x(元)與日銷售量y(個)之間有如下關(guān)系:
日銷售單價x(元) | 3 | 4 | 5 | 6 |
日銷售量y(個) | 20 | 15 | 12 | 10 |
(1)猜測并確定y與x之間的函數(shù)關(guān)系式,并畫出圖象;
(2)設(shè)經(jīng)營此賀卡的銷售利潤為W元,求出W與x之間的函數(shù)關(guān)系式,
(3)若物價局規(guī)定此賀卡的售價最高不能超過10元/個,請你求出當(dāng)日銷售單價x定為多少時,才能獲得最大日銷售利潤?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com