已知:如圖,D是△ABC中BC邊上一點(diǎn),E是AD上的一點(diǎn),EB=EC,∠ABE=∠ACE,求證:∠BAE=∠CAE.

【答案】分析:由EB=EC,根據(jù)等腰三角形的性質(zhì)得到∠EBD=∠ECD,而∠ABE=∠ACE,則∠ABC=∠ACB,根據(jù)等腰三角形的判定得AB=AC,有EB=EC,AE為公共邊,根據(jù)全等三角形的判定易得△ABE≌△ACE,由全等的性質(zhì)即可得到結(jié)論.
解答:證明:∵EB=EC,
∴∠EBD=∠ECD,
又∵∠ABE=∠ACE,
∴∠ABC=∠ACB,
∴AB=AC,
在△ABE和△ACE中

∴△ABE≌△ACE,
∴∠BAE=∠CAE.
點(diǎn)評:本題考查了全等三角形的判定與性質(zhì):三條邊對應(yīng)相等的兩個三角形全等;全等三角形的對應(yīng)角相等.也考查了等腰三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、已知:如圖,E是△ABC的邊CA延長線上一點(diǎn),F(xiàn)是AB上一點(diǎn),D點(diǎn)在BC的延長線上.試證明∠1<∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2001•東城區(qū))已知:如圖,AB是半圓O的直徑,C為AB上一點(diǎn),AC為半圓O′的直徑,BD切半圓O′于點(diǎn)D,CE⊥AB交半圓O于點(diǎn)F.
(1)求證:BD=BE;
(2)若兩圓半徑的比為3:2,試判斷∠EBD是直角、銳角還是鈍角?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2004•西藏)已知,如圖,P是⊙O外一點(diǎn),PC切⊙O于點(diǎn)C,割線PO交⊙O于點(diǎn)B、A,且AC=PC.
(1)求證:△PBC≌AOC;
(2)如果PB=2,點(diǎn)M在⊙O的下半圈上運(yùn)動(不與A、B重合),求當(dāng)△ABM的面積最大時,AC•AM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,P是∠AOB的角平分線OC上一點(diǎn).PE⊥OA于E.以P點(diǎn)為圓心,PE長為半徑作⊙P.求證:⊙P與OB相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AD是一條直線,∠1=65°,∠2=115°.求證:BE∥CF.

查看答案和解析>>

同步練習(xí)冊答案