成立,求a的取值范圍.

答案:
解析:

  解:等式的左邊可變?yōu)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30A1/0114/0294/5643530c34f1914389158aeef76d33fa/C/Image390.gif" width=88 HEIGHT=44>,而右邊為,從左邊到右邊是利用分式的基本性質(zhì),分子和分母都除以a-3,所以要保證a-3≠0,即a≠3.

  說(shuō)明:這是分式的基本性質(zhì)的一個(gè)逆向應(yīng)用.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

28、閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離;即|x|=|x-0|,也就是說(shuō),|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;
這個(gè)結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對(duì)應(yīng)點(diǎn)之間的距離;
在解題中,我們會(huì)常常運(yùn)用絕對(duì)值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊.若x對(duì)應(yīng)點(diǎn)在1的右邊,如圖可以看出x=2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問(wèn)題:
(1)方程|x+3|=4的解為
1或-7
;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對(duì)任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若不等式
2x2+2kx+k4x2+6x+3
<1
對(duì)于x取任何實(shí)數(shù)均成立,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•天津)已知拋物線y1=ax2+bx+c(a≠0)的對(duì)稱軸是直線l,頂點(diǎn)為點(diǎn)M.若自變量x和函數(shù)值y1的部分對(duì)應(yīng)值如下表所示:
(Ⅰ)求y1與x之間的函數(shù)關(guān)系式;
(Ⅱ)若經(jīng)過(guò)點(diǎn)T(0,t)作垂直于y軸的直線l′,A為直線l′上的動(dòng)點(diǎn),線段AM的垂直平分線交直線l于點(diǎn)B,點(diǎn)B關(guān)于直線AM的對(duì)稱點(diǎn)為P,記P(x,y2).
(1)求y2與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x取任意實(shí)數(shù)時(shí),若對(duì)于同一個(gè)x,有y1<y2恒成立,求t的取值范圍.
x -1 0 3
y1=ax2+bx+c 0
9
4
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新課標(biāo)讀想練同步測(cè)試 八年級(jí)數(shù)學(xué)(下) 人教版 題型:044

成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案