【題目】咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學生進行問卷調(diào)查,根據(jù)調(diào)查結果繪制了如圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)補全條形統(tǒng)計圖,“體育”對應扇形的圓心角是度;
(2)根據(jù)以上統(tǒng)計分析,估計該校2000名學生中喜愛“娛樂”的有人;
(3)在此次問卷調(diào)查中,甲、乙兩班分別有2人喜愛新聞節(jié)目,若從這4人中隨機抽取2人去參加“新聞小記者”培訓,請用列表法或畫樹狀圖的方法求所抽取的2人來自不同班級的概率.

【答案】
(1)72
(2)700
(3)解:將兩班報名的學生分別記為甲1、甲2、乙1、乙2,樹狀圖如圖所示:

所以P2名學生來自不同班)= =


【解析】解:(1)調(diào)查的學生總數(shù)為60÷30%=200(人), 則體育類人數(shù)為200﹣(30+60+70)=40,
補全條形圖如下:

“體育”對應扇形的圓心角是360°× =72°,
所以答案是:72;
⑵估計該校2000名學生中喜愛“娛樂”的有:2000× =700(人),
所以答案是:700;
【考點精析】解答此題的關鍵在于理解扇形統(tǒng)計圖的相關知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若平面直角坐標系中的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”.規(guī)定“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.

(1)若動點P從坐標點M(1,1)出發(fā),按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,則點N的坐標為 , 點G的坐標為
(2)若動點P從坐標原點出發(fā),先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到點O.當△OBC∽△MNG(在(1)中的三角形).且相似比為2:1時,請你直接寫出“平移量”m , n , q
(3)在(1)、(2)的前提下,請你在平面直角坐標系中畫出△OBC與△MNG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣ x﹣ 與x軸交于點A,與y軸交于點C,拋物線y=ax2 x+c(a≠0)經(jīng)過A,B,C三點.

(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標;
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標;若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最小?若存在,求出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”,某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學生中進行了抽樣調(diào)查,根據(jù)調(diào)查結果繪制城如圖所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:

(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是部,中位數(shù)是部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為度.
(2)請將條形統(tǒng)計圖補充完整;
(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,則他們選中同一名著的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為( )

A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=6.

(1)求拋物線的解析式及點D的坐標;
(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;
(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ= MN時,求菱形對角線MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,連接AE,BD交于點O,AE與DC交于點M,BD與AC交于點N.
(1)如圖1,求證:AE=BD;
(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖2中四對全等的直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y= 在第一象限的圖象如圖所示,過點A(1,0)作x軸的垂線,交反比例函數(shù)y= 的圖象于點M,△AOM的面積為3.

(1)求反比例函數(shù)的解析式;
(2)設點B的坐標為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點在反比例函數(shù)y= 的圖象上,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生在家使用電腦的情況(分為“總是、較多、較少、不用”四種情況),隨機在八、九年級各抽取相同數(shù)量的學生進行調(diào)查,繪制成部分統(tǒng)計圖如下所示.請根據(jù)圖中信息,回答下列問題:
(1)九年級一共抽查了名學生,圖中的a= , “總是”對應的圓心角為度.
(2)根據(jù)提供的信息,補全條形統(tǒng)計圖.
(3)若該校九年級共有900名學生,請你統(tǒng)計其中使用電腦情況為“較少”的學生有多少名?

查看答案和解析>>

同步練習冊答案