【題目】如圖,△ABC中,E為邊BC延長(zhǎng)線(xiàn)上一點(diǎn),∠ABC的平分線(xiàn)與∠ACE的平分線(xiàn)交于點(diǎn)D,若∠A=46°,則∠D的度數(shù)為( )
A.23°B.92°C.44°D.46°
【答案】A
【解析】
先根據(jù)角平分線(xiàn)的定義得到∠1=∠2,∠3=∠4,再根據(jù)三角形外角性質(zhì)得∠1+∠2=∠3+∠4+∠A,則2∠1=2∠3+∠A,由∠1=∠3+∠D,利用等式的性質(zhì)得到∠D= ∠A,然后把∠A的度數(shù)代入計(jì)算即可.
各角標(biāo)記如圖,
∵∠ABC的平分線(xiàn)與∠ACE的平分線(xiàn)交于點(diǎn)D,
∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D= ∠A= ×46°=23°.故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙3名學(xué)生各自隨機(jī)選擇到A、B 2個(gè)書(shū)店購(gòu)書(shū).
(1)求甲、乙2名學(xué)生在不同書(shū)店購(gòu)書(shū)的概率;
(2)求甲、乙、丙3名學(xué)生在同一書(shū)店購(gòu)書(shū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線(xiàn)上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由△DAM平移得到.若過(guò)點(diǎn)E作EH⊥AC,H為垂足,則有以下結(jié)論:①點(diǎn)M位置變化,使得∠DHC=60°時(shí),2BE=DM;②無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,∠CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=8,點(diǎn)E、F分別在AD和AB上,AE=3,AF=4.
(1)點(diǎn)P在邊BC上運(yùn)動(dòng)、四邊形EFPH是平行四邊形,連接DH.
①當(dāng)四邊形FPHE是菱形時(shí),線(xiàn)段BP=_____;
②當(dāng)點(diǎn)P在邊BC上運(yùn)動(dòng)時(shí),△DEH的面積會(huì)不會(huì)變化?若變化,求其最大值;若不變,求出它的值;
③當(dāng)△DEH是等腰三角形時(shí),求BP的長(zhǎng);
(2)若點(diǎn)E沿E-D-C向終點(diǎn)C運(yùn)動(dòng),點(diǎn)F沿F-B-C終點(diǎn)C運(yùn)動(dòng),速度分別為每秒3個(gè)單位長(zhǎng)度和每秒4個(gè)單位長(zhǎng)度,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)C時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),求EF的中點(diǎn)O的運(yùn)動(dòng)路徑長(zhǎng)(要求寫(xiě)出簡(jiǎn)略的計(jì)算過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=-x2-2x+3的圖象與x軸交于A(yíng)、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線(xiàn)的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M為線(xiàn)段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線(xiàn),與直線(xiàn)AC交于點(diǎn)E,與拋物線(xiàn)交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線(xiàn)于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N,若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ,過(guò)拋物線(xiàn)上一點(diǎn)F作
y軸的平行線(xiàn),與直線(xiàn)AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若,
求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2008年5月12日,汶川發(fā)生了里氏8.0級(jí)地震,給當(dāng)?shù)厝嗣裨斐闪司薮蟮膿p失.某中學(xué)全體師生積極捐款,其中九年級(jí)的3個(gè)班學(xué)生的捐款金額如下表:
老師統(tǒng)計(jì)時(shí)不小心把墨水滴到了其中兩個(gè)班級(jí)的捐款金額上,但他知道下面三條信息:
信息一:這三個(gè)班的捐款總金額是7700元;
信息二:二班的捐款金額比三班的捐款金額多300元;
信息三:一班學(xué)生平均每人捐款的金額大于48元,小于51元.
請(qǐng)根據(jù)以上信息,幫助老師解決:
(1)二班與三班的捐款金額各是多少元?
(2)一班的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年5月,某校為了了解九年級(jí)學(xué)生的體育備考情況,隨機(jī)抽取了部分學(xué)生進(jìn)行模擬測(cè)試,現(xiàn)將學(xué)生按模擬測(cè)試成績(jī)m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并繪制出了如圖的兩幅不完整的統(tǒng)計(jì)圖:
(1)本次模擬測(cè)試共抽取了多少個(gè)學(xué)生?
(2)將圖乙中條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果該校今年有九年級(jí)學(xué)生1000人,試估計(jì)其中D等學(xué)生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
基本不等式≤(a>0,b>0),當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立,它是解決最值問(wèn)題的有力工具.
例如:在x>0的條件下,當(dāng)x為何值時(shí),x+有最小值,最小值是多少?
解:∵x>0,>0∴≥,即≥2,∴≥2
當(dāng)且僅當(dāng)x=,即x=1時(shí),x+有最小值,最小值為2.
請(qǐng)根據(jù)閱讀材料解答下列問(wèn)題:
(1)已知x>0,則當(dāng)x為____時(shí),代數(shù)式3x+的最小值為______;
(2)已知a>0,b>0,a2+b2=7,則ab的最大值為_____
(3)已知矩形面積為9,求矩形周長(zhǎng)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com