【題目】某幼兒園舉行用火柴棒擺“金魚”比賽,如圖所示,請仔細觀察并找出規(guī)律,解答下列問題:

(1)按照此規(guī)律,擺第n個圖時,需用火柴棒的根數(shù)是多少?

(2)求擺第50個圖時所需用的火柴棒的根數(shù)

(3)按此規(guī)律用1202根火柴棒擺出第n個圖形,求n的值.

【答案】(1)6n+2(2)302(3)200

【解析】

(1)由搭第1個圖形需8根火柴,此后,每個圖形都比前一個圖形多用6根,故按照上面的規(guī)律可得:擺n條“金魚”需用火柴棒的根數(shù)為8+6(n-1)根;
(2)將n=50代入求得代數(shù)式6n+2的值即可;
(3)令6n+2=1202,求得n的值即可.

(1)8+6(n-1)或6n+2.

(2)當(dāng)n=50時,6n+2=6×50+2=302(根)

即擺第50個圖時需用火柴棒302根.

(3)6n+2=1202,

解得:n=200.

∴用1202根火柴棒擺出第n個圖形,n200

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的邊AB為直徑作⊙O,交邊BC于點D,點E是 上一點.
(1)若AC為⊙O的切線,試說明:∠AED=∠CAD;
(2)若AE平分∠BAD,延長DE、AB交于點P,若PB=BO,DE=2,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,點 A(2,1),點 A 與點 B 關(guān)于 y 軸對稱,ACy 軸,且 AC=3,連接 BC y 軸于點 D.

1)點 B 的坐標(biāo)為_____,點 C 的坐標(biāo)為_____;

2)如圖 2,連接 OCOC 平分∠ACB,求證:OBOC;

3)如圖 3,在(2)的條件下,點 P OC 上一點,且∠PAC=45°,求點 P 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平移三角形ABD,使點D沿BD的延長線平移至點C,得到三角形AC于點E,AD平分∠BAC.

(1)猜想之間的關(guān)系,并寫出理由;

(2)如果將三角形ABD平移至如圖2所示位置,得到三角形,請問平分嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠去年的總產(chǎn)值比總支出多500萬元,而今年計劃的總產(chǎn)值比總支出多950萬元.已知今年計劃總產(chǎn)值比去年增加15%,而今年計劃總支出比去年減少10%.求今年計劃的總產(chǎn)值和總支出各為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點DAC的垂直平分線上.

(1)若AB=AD,∠BAD=26°,求∠B∠C的度數(shù);

(2)若AB=AD=DC,AC=BC,求∠C的度數(shù);

(3)若AC=6,△ABD的周長為13cm,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AD、BD分別平分∠CAG、∠EBA,AD∥BC,BDACF,連接CD,

(1)求證:AB=AC.

(2)當(dāng)∠EBA的大小滿足什么條件時,以A,B,F(xiàn)為頂點三角形為等腰三角形?

(3)猜想∠BDC∠DAC之間的數(shù)量關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一塊廣告牌AB頂端固定在一堵墻AD的A點處,與地面夾角∠ABD=45°,由于施工底部斷裂掉一段以后,底部落在距離B點8米處的C點,此時與地面夾角∠ACD=75°.求斷裂前、后的廣告牌AB、AC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學(xué)校選擇.

查看答案和解析>>

同步練習(xí)冊答案