【題目】為了測量被池塘隔開的A,B兩點之間的距離,根據(jù)實際情況,作出如圖圖形,其中ABBE,EFBE,AF交BE于D,C在BD上.有四位同學(xué)分別測量出以下四組數(shù)據(jù):BC,ACB; CD,ACB,ADB;EF,DE,BD;DE,DC,BC.能根據(jù)所測數(shù)據(jù),求出A,B間距離的有【 】

A.1組 B.2組 C.3組 D.4組

【答案】C。

解析此題比較綜合,要多方面考慮:

①∵知道ACB和BC的長,可利用ACB的正切直接求AB的長;

可利用ACB和ADB的正切設(shè)方程組求出AB

ABD∽△EFD,可利用相似三角形對應(yīng)邊成比例,求出AB;

無法求出A,B間距離

因此共有3組可以求出A,B間距離。故選C。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】測量物體高度

小明想測量一棵樹的高度,在陽光下,小明測得一根長為米的竹竿的影長為米.同時另一名同學(xué)測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),其影長為米,落在地面上的影長為米,則樹高為多少米.

小明在某一時刻測得的桿子在陽光下的影子長為,他想測量電線桿的高度,但其影子恰好落在土坡的坡面和地面上,量得,與地面成

求電線桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)為加強與家長的溝通,某校在家長會到來之前需印刷《致家長的一封信》等材料以作宣傳,該校的印刷任務(wù)原來由甲復(fù)印店承接,其收費y(元)與印刷頁數(shù)x(頁)的函數(shù)關(guān)系如圖所示.

(1)從圖象中可看出:印刷超過500頁部分每頁收費 元;

(2)現(xiàn)在乙印刷廠表示:每頁0.15元收費.另收200元的制版費,乙印刷廠收費y(元)與印刷頁數(shù)x(頁)的函數(shù)關(guān)系為 ;

(3)在給出的坐標系內(nèi)畫出(2)中的函數(shù)圖象,并結(jié)合函數(shù)圖象回答印刷頁數(shù)在3000頁左右應(yīng)選擇哪個印刷店?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=D=30°,邊AD與邊BC交于點P(不與點BC重合),點B,EAD異側(cè),I為△APC的內(nèi)心.
1)求證:∠BAD=CAE;
2)設(shè)AP=x,請用含x的式子表示PD,并求PD的最大值;
3)當ABAC時,∠AIC的取值范圍為<∠AIC,分別直接寫出m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線軸交于兩點,與軸交于點,其中點的坐標為

求該拋物線的解析式;

若點在拋物線上,且,求點的坐標;

設(shè)點是線段上的動點,作軸交拋物線于點,求線段長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把n個邊長為1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,計算tanBA4C=_____,…按此規(guī)律,寫出tanBAnC=_____(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在正方形的網(wǎng)格中,若點A的坐標為(﹣1,1),點B的坐標為(﹣2,0.

按要求回答下列問題:

(1)在圖中建立正確的平面直角坐標系;

(2)根據(jù)所建立的坐標系,直接寫出點C的坐標 ( , );

(3)作出三角形ABC關(guān)于y軸對稱的三角形A1B1C1;

(4)ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般地,任意三角形都是自相似圖形,只要順次連接三角形各邊中點,則可將原三角形分割為四個都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點所進行的分割,稱為階分割(如圖);把階分割得出的個三角形再分別順次連接它的各邊中點所進行的分割,稱為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個小三角形都是全等三角形(為正整數(shù)),設(shè)此時小三角形的面積為.請寫出一個反映,,之間關(guān)系的等式________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,IB,IC分別平分∠ABC,∠ACB,過I點作DEBC,分別交ABD,交ACE,給出下列結(jié)論:①DBI是等腰三角形;②ACI是等腰三角形;③AI平分∠BAC;④ADE周長等于AB+AC,其中正確的是: ___________(只需填寫序號)。

查看答案和解析>>

同步練習(xí)冊答案