精英家教網 > 初中數學 > 題目詳情
點D是⊙O的直徑CA延長線上一點,BD是⊙O的切線,切點為點B,點E是劣弧BC上一點,∠BEA=25°.求∠D的度數.

【答案】分析:連接OB,由圓周角定理得,∠BOD=2∠BCA=2∠BEA,又BD是⊙O的切線,則在Rt△BOD中,∠D即可求出.
解答:解:連接OB.
由于BD是⊙O的切線,
△BOD是直角三角形,又∠BOD=2∠BCA=2∠BEA=50°,
則在Rt△BOD中,∠D=40°.
點評:本題考查了切線的性質及圓周角定理,同學們要學會從切線的性質入手解決問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,點D是⊙O的直徑CA延長線上一點,點B在⊙O上,且OA=AB=AD.
(1)求證:BD是⊙O的切線;
(2)若點E是劣弧BC上一點,AE與BC相交于點F,且BE=8,tan∠BFA=
5
2
,求⊙O的半徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.
選做題:甲:已知關于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求證:不論m取何值,方程總有兩個不相等的實數根;
(2)若方程的兩個實數根x1、x2滿足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如圖,點D是⊙O的直徑CA延長線上一點,點B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點E是劣弧BC上一點,AE與BC相交于點F,且△BEF的面積為8,cos∠BFA=
2
3
,求△ACF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

點D是⊙O的直徑CA延長線上一點,點B在⊙O上,BD是⊙O的切線,且AB=AD.
(1)求證:點A是DO的中點.
(2)若點E是劣弧BC上一點,AE與BC相交于點F,且△BEF的面積為8,cos∠BFA=
23
,求△ACF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,點D是⊙O的直徑CA延長線上一點,點B在⊙O上,且∠D=∠C=30°.
(1)求證:BD是⊙O的切線.
(2)分別過B、F兩點作DC的垂線,垂足分別為M、N,且CN:CM=2:3若點E是劣弧BC上一點,AE與BC相交于點F,△ABC的面積為12cm2,cos∠EFC=
23
,求△BFE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,點D是⊙O的直徑CA延長線上一點,點B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點E是劣弧
AB
上一點,AE與BC相交于點F,且∠ABE=105°,BD=2
3
,求出AE的值.

查看答案和解析>>

同步練習冊答案