【題目】閱讀下面的材料:
如圖1,在數(shù)軸上A點衰示的數(shù)為a,B點表示的數(shù)為b,則點A到點B的距離記為AB.線段AB的長可以用右邊的數(shù)減去左邊的數(shù)表示,即AB﹣b﹣a.
請用上面的知識解答下面的問題:
如圖2,一個點從數(shù)軸上的原點開始,先向左移動1cm到達A點,再向左移動2cm到達B點,然后向右移動7cm到達C點,用1個單位長度表示1cm.
(1)請你在數(shù)軸上表示出A.B.C三點的位置:
(2)點C到點人的距離CA= cm;若數(shù)軸上有一點D,且AD=4,則點D表示的數(shù)為 ;
(3)若將點A向右移動xcm,則移動后的點表示的數(shù)為 ;(用代數(shù)式表示)
(4)若點B以每秒2cm的速度向左移動,同時A.C點分別以每秒1cm、4cm的速度向右移動.設(shè)移動時間為t秒,
試探索:CA﹣AB的值是否會隨著t的變化而改變?請說明理由.
【答案】(1)如圖所示(2)5,﹣5或3(3)﹣1+x(4)CA﹣AB的值不會隨著t的變化而變化
【解析】試題分析:(1)根據(jù)題意容易畫出圖形;(2)由題意容易得出CA的長度;設(shè)D表示的數(shù)為a,由絕對值的意義容易得出結(jié)果;(3)將點A向右移動xcm,則移動后的點表示的數(shù)為-1+x;(4)表示出CA和AB,再相減即可得出結(jié)論.
試題解析:(1)如圖所示:
(2)CA=4﹣(﹣1)=4+1=5(cm);
設(shè)D表示的數(shù)為a,
∵AD=4,
∴|﹣1﹣a|=4,
解得:a=﹣5或3,
∴點D表示的數(shù)為﹣5或3;
故答案為:5,﹣5或3;
(3)將點A向右移動xcm,則移動后的點表示的數(shù)為﹣1+x;
故答案為:﹣1+x;
(4)CA﹣AB的值不會隨著t的變化而變化,理由如下:
根據(jù)題意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,
∴CA﹣AB=(5+3t)﹣(2+3t)=3,
∴CA﹣AB的值不會隨著t的變化而變化
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點B,且交拋物線于另一點C(,b+8),求當(dāng)x≥1時,y1的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°.
(1)請在BC上找一點P,作⊙P與AC,AB都相切,切點為Q;(尺規(guī)作圖,保留作圖痕跡)
(2)若AB=3,BC=4,求第(1)題中所作圓的半徑;
(3)連結(jié)BQ,第(2)中的條件均不變,求sin∠CBQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點A(﹣1,a)和點B(4,b)在直線y=﹣x+m上,則a與b的大小關(guān)系是( )
A.a>b
B.a<b
C.a=b
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠1=∠2.
(1)請你添加一個與直線AC有關(guān)的條件,由此可得出BE是△ABC的外角平分線;
(2)請你添加一個與∠1有關(guān)的條件,由此可得出BE是△ABC的外角平分線;
(3)如果“已知在△ABC中,∠1=∠2不變”,請你把(1)中添加的條件與所得結(jié)論互換,所得的命題是否是真命題,理由是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com