(2009•石景山區(qū)一模)已知:如圖,在△ABC中,D是AB邊上的一點(diǎn),且BD=2AD,CD=10,,則BC邊上的高AE的長(zhǎng)為( )

A.4.5
B.6
C.8
D.9
【答案】分析:作DF⊥BC于點(diǎn)F.構(gòu)造比例線段,然后結(jié)合三角函數(shù)的定義解答.
解答:解:作DF⊥BC于點(diǎn)F,則DF∥AE.
∴DF:AE=BD:BA=BD:(AD+BD)=2:3.
∵CD=10,
∴sin∠BCD=DF:CD=3:5,
∴DF=6,
∴AE=•DF==9.
故選D.
點(diǎn)評(píng):本題通過(guò)作出了輔助線,得到DF∥AE,利用等比例線段的性質(zhì)和銳角三角函數(shù)的概念求解的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市石景山區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•石景山區(qū)一模)已知:如圖,直角三角形AOB的兩直角邊OA、OB分別在x軸的正半軸和y軸的負(fù)半軸上,C為線段OA上一點(diǎn),OC=OB,拋物線y=x2-(m+1)x+m(m是常數(shù),且m>1)經(jīng)過(guò)A、C兩點(diǎn).
(1)求出A、B兩點(diǎn)的坐標(biāo)(可用含m的代數(shù)式表示);
(2)若△AOB的面積為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市石景山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•石景山區(qū)二模)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB為等邊三角形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B在第一象限,AC是∠OAB的平分線,并且與y軸交于點(diǎn)E,點(diǎn)M為直線AC上一個(gè)動(dòng)點(diǎn),把△AOM繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使邊AO與邊AB重合,得到△ABD.
(1)求直線OB的解析式;
(2)當(dāng)M與點(diǎn)E重合時(shí),求此時(shí)點(diǎn)D的坐標(biāo);
(3)是否存在點(diǎn)M,使△OMD的面積等于3?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市石景山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•石景山區(qū)二模)如圖,四邊形ABCD是菱形,點(diǎn)D的坐標(biāo)是(0,),以點(diǎn)C為頂點(diǎn)的拋物線y=ax2+bx+c恰經(jīng)過(guò)x軸上的點(diǎn)A,B.
(1)求點(diǎn)C的坐標(biāo);
(2)若拋物線向上平移后恰好經(jīng)過(guò)點(diǎn)D,求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(12)(解析版) 題型:選擇題

(2009•石景山區(qū)二模)有一列數(shù)a1,a2,a3,a4,…,an,從第二個(gè)數(shù)開(kāi)始,每一個(gè)數(shù)都等于1與它前面那個(gè)數(shù)的倒數(shù)的差,若a1=2,則a2008值為( )
A.2
B.-1
C.
D.2008

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省日照市中考數(shù)學(xué)模擬試卷2(丁文斌)(解析版) 題型:選擇題

(2009•石景山區(qū)二模)有一列數(shù)a1,a2,a3,a4,…,an,從第二個(gè)數(shù)開(kāi)始,每一個(gè)數(shù)都等于1與它前面那個(gè)數(shù)的倒數(shù)的差,若a1=2,則a2008值為( )
A.2
B.-1
C.
D.2008

查看答案和解析>>

同步練習(xí)冊(cè)答案