【題目】已知:在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
向下平移個單位長度得到的,點(diǎn)的坐標(biāo)是________;
以點(diǎn)為位似中心,在網(wǎng)格內(nèi)畫出,使與位似,且位似比為,點(diǎn)的坐標(biāo)是________;(畫出圖形)
的面積是________平方單位.
【答案】.,,10
【解析】
(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點(diǎn)的坐標(biāo)即可,
(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置,從而得到對應(yīng)點(diǎn)的坐標(biāo)即可,
(3)利用等腰直角三角形的性質(zhì)得出△ 的面積即可.
(1)根據(jù)平移的性質(zhì),點(diǎn) 是點(diǎn)C向下平移個單位,橫坐標(biāo)不變,縱坐標(biāo)減4,可知點(diǎn)的坐標(biāo)為(2,-2)
(2)∵△ABC與△是位似圖像,位似比是2:1,位似中心為點(diǎn)B
∴ 的坐標(biāo)為(1,0),
(3)∵==20, ==20,==40,
∴+=,
∴△是等腰直角三角形,
∴△面積是: × ×=10平方單位
故答案為:(1)(2,-2);(2)(1,0);(3)10
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A、B兩個頂點(diǎn)在軸的上方,點(diǎn)C的坐標(biāo)是(1,0).以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,設(shè)點(diǎn)B的對應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把長與寬之比為的矩形紙片稱為標(biāo)準(zhǔn)紙.不難發(fā)現(xiàn),將一張標(biāo)準(zhǔn)紙如圖一次又一次對開后,所得的矩形紙片都是標(biāo)準(zhǔn)紙.現(xiàn)有一張標(biāo)準(zhǔn)紙,,,那么把它第次對開后所得標(biāo)準(zhǔn)紙的周長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D為BC邊上的一點(diǎn),若∠B=36°,AB=AC=BD=2.
(1)求CD的長;
(2)利用此圖求sin18°的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于(2,0)、(1,0),與y軸交于C,直線l1經(jīng)過點(diǎn)C且平行于x軸,與拋物線的另一個交點(diǎn)為D,將直線l1向下平移t個單位得到直線l2,l2與拋物線交于A、B兩點(diǎn).
(1)求拋物線解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)t=2時,探究△ABC的形狀,并說明理由;
(3)在(2)的條件下,點(diǎn)M(m,0)在x軸上自由運(yùn)動,過M作MN⊥x軸,交直線BC于P,交拋物線于N,若三個點(diǎn)M、N、P中恰有一個點(diǎn)是其他兩個點(diǎn)連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M、N、P三點(diǎn)為“共諧點(diǎn)”,請直接寫出使得M、P、N三點(diǎn)為“共諧點(diǎn)”的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,ABCO的頂點(diǎn)A,B的坐標(biāo)分別是A(3,0),B(0,2),動點(diǎn)P在直線y=x上運(yùn)動,以點(diǎn)P為圓心,PB長為半徑的⊙P隨點(diǎn)P運(yùn)動,當(dāng)⊙P與四邊形ABCO的邊所在直線相切時,P點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,∠B=∠C=90 ,M是BC的中點(diǎn),DM平分∠ADC.
(1)若連接AM,則AM是否平分∠BAD?請你證明你的結(jié)論;
(2)線段DM與AM有怎樣的位置關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),AC為⊙O的直徑,弦BD⊥AC下列結(jié)論:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正確的只有( )
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=30°,BD平分∠ABC交AC于點(diǎn)D,BC的垂直平分線EF交BC于點(diǎn)E,交BD于點(diǎn)F,若BF=6,則AC的長為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com