【題目】如圖,利用一面墻(墻的長(zhǎng)度為20m),用34m長(zhǎng)的籬笆圍成兩個(gè)雞場(chǎng),中間用一道籬笆隔開,每個(gè)雞場(chǎng)均留一道1m寬的門,設(shè)AB的長(zhǎng)為x米。
(1)若兩個(gè)雞場(chǎng)總面積為96m2,求x;
(2)若兩個(gè)雞場(chǎng)的面積和為S,求S關(guān)于x的關(guān)系式;
(3)兩個(gè)雞場(chǎng)面積和S有最大值嗎?若有,最大值是多少?
【答案】(1)8;(2)S=-3x2+36x,(≤x<12).(3)S最大=108.
【解析】
試題分析:(1)根據(jù)題意可知AD的長(zhǎng)度等于BC的長(zhǎng)度,列出式子AD-2+3x=34,即可得出用x的代數(shù)式表示AD的長(zhǎng),利用題目給出的面積,列出方程式求出x的值;
(2)利用面積公式可得S關(guān)于x的關(guān)系式;
(3)把代數(shù)式表示的面積整理為a(x-h)2+b的形式可求得最大面積,亦可得出AB的長(zhǎng).
試題解析:(1)由題意得:AD=BC,
∵兩個(gè)雞場(chǎng)是用34m長(zhǎng)的籬笆圍成,
∴AD-2+3x=34,
即AD=36-3x,
∵兩個(gè)雞場(chǎng)總面積為96m2,
∴列出方程式:x(36-3x)=96,
解得:x=4或x=8,
當(dāng)x=4時(shí),AD=24>20,不合題意,舍去;
當(dāng)x=8時(shí),AD=12<20,滿足題意,
故x=8時(shí),兩個(gè)雞場(chǎng)總面積為96m2;
(2)S=AD×AB=(36-3x)x=-3x2+36x,
∵0<AD≤20,
∴≤x<12,
故S關(guān)于x的關(guān)系式:S=-3x2+36x,(≤x<12).
(3)雞場(chǎng)面積S=x(36-3x)=-3x2+36x=-3(x-6)2+108,
當(dāng)x=6時(shí),S取最大值108,
此時(shí)AD=18<20,符合題意,
即AB=6時(shí),S最大=108.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形AOBC中,點(diǎn)A的坐標(biāo)是(-2,1),點(diǎn)C的縱坐標(biāo)是4,則B,C兩點(diǎn)的坐標(biāo)分別是( )
A. (,3),(-,4) B. (,3),(-,4)
C. (, ),(-,4) D. (, ),(-,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.2a2+3a3=5a5
B.a6÷a3=a2
C.(﹣a3)2=a6
D.(x+y)2=x2+y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( ).①對(duì)頂角相等;②過直線外一點(diǎn)有且只有一條直線與已知直線平行;③同旁內(nèi)角互補(bǔ);④在同一平面內(nèi),垂直于同一條直線的兩條直線平行
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com