【題目】如圖△ABC是正三角形,曲線CDEF叫做“正三角形的漸開線”,其中 、 圓心依次按A、B、C…循環(huán),它們依次相連接.若AB=1,則曲線CDEF長是(結果保留π).

【答案】4π
【解析】解:弧CD的長是 =
弧DE的長是: = ,
弧EF的長是: =2π=2π,
則曲線CDEF的長是: + +2π=4π,
所以答案是:4π.
【考點精析】通過靈活運用等邊三角形的性質和弧長計算公式,掌握等邊三角形的三個角都相等并且每個角都是60°;若設⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,ABDC,連接BD,BE平分∠ABD,BEAD,EBC和∠DCB的角平分線相交于點F,若∠ADC=110°,則∠F的度數(shù)為( 。

A. 115° B. 110° C. 105° D. 100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+2x+a﹣2=0.
(1)若該方程有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍;
(2)當該方程的一個根為1時,求a的值及方程的另一根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于概率,下列說法正確的是(
A.莒縣“明天降雨的概率是75%”表明明天莒縣會有75%的時間會下雨
B.隨機拋擲一枚質地均勻的硬幣,落地后一定反面向上
C.在一次抽獎活動中,中獎的概率是1%,則抽獎100次就一定會中獎
D.同時拋擲兩枚質地均勻硬幣,“一枚硬幣正面向上,一枚硬幣反面向上”的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(1,0),B(2,0),四邊形ABCD是正方形.

(1)寫出C,D兩點坐標;

(2)將正方形ABCD繞O點逆時針旋轉90°后所得四邊形的四個頂點的坐標分別是多少?

(3)若將(2)所得的四邊形再繞O點逆時針旋轉90°后,所得四邊形的四個頂點坐標又分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問題:

(1)寫出電流I與電阻R之間的函數(shù)解析式.
(2)如果一個用電器的電阻為5Ω,其允許通過的最大電流是1A,那么這個用電器接在這個閉合電路中,會不會燒毀?說明理由.
(3)若允許的電流不超過4A時,那么電阻R的取值應該控制在什么范圍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于概率,下列說法正確的是(
A.莒縣“明天降雨的概率是75%”表明明天莒縣會有75%的時間會下雨
B.隨機拋擲一枚質地均勻的硬幣,落地后一定反面向上
C.在一次抽獎活動中,中獎的概率是1%,則抽獎100次就一定會中獎
D.同時拋擲兩枚質地均勻硬幣,“一枚硬幣正面向上,一枚硬幣反面向上”的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差SOAC﹣SBAD為(

A.36
B.12
C.6
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標為(﹣1,0).則下面的四個結論:
①2a+b=0;②4a﹣2b+c<0;③ac>0;④當y<0時,x<﹣1或x>2.
其中正確的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案