【題目】如圖,在邊的異側(cè)作,并使.點在射線上.

(1)如圖,若,求證:

(2),試解決下面兩個問題:

①如圖2,,求的度數(shù);

②如圖3,若,過點交射線于點,當時,求的度數(shù).

【答案】1)證明過程見詳解;(235°;117°

【解析】

1)根據(jù)平行線的性質(zhì),可以證得∠DAE=D,再通過等量代換得∠DAE=C,即可證明;

2)①設CEDB交于點G,利用三角形內(nèi)角和為180°,分別在△CBG和△DAG中把∠CGB表示出來,均是關于∠C的關系式,即可求解;

②根據(jù)題設,可證明∠DBF=D=C,利用三角形內(nèi)角和為180°,以及平角定義求得∠EFB=2C+90,又因為∠EFB=7DBF=7C,即可求得∠C=18°,而∠CBA=DBA,進而可以求得∠BAD的度數(shù).

1)證明:∵AC//BD

∴∠DAE=D

∵∠C=D

∴∠DAE=C

AD//BC

2)①設CEDB交于點G,如圖:

BDAC,∠C=D, DAE=120

∴∠CBG=90,

在△CBG中,∠CGB=180-CBG -C =180-90-C,

在△DAG中,∠DGA=180-D-DAE=180-C-20,

而∠CGB=180-DGA=180-180-C-20=C+20,

180-90-C=C+20

解得∠C=35

故答案為35

②∵BF//AD,∠C=D,

∴∠DBF=D=C

∵∠EFB=7DBF=7C,

又∵∠EFB=180-CFB=180-180-C-90-DBF=2C+90,

7C=2C+90

解得∠C=D =18,

在△CBA和△DBA中,∠C=D,∠BAC=BAD

∴∠CBA=DBA=

∴∠BAD=180-D-DBA=180-18-45=117

故答案為117

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.

(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關系是
②設△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關系是.

(2)猜想論證
當△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.

(3)拓展探究
已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//AB交BC于點E(如圖4).若在射線BA上存在點F,使 ,請直接寫出相應的BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結論:①abc<0;② ;③ac-b+1=0;④OA·OB= .其中正確結論的個數(shù)是( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1y1=﹣x+b分別與x軸、y軸交于點A、點B,與直線l2y2x交于點C2,2).

1)若y1y2,請直接寫出x的取值范圍;

2)點P在直線l1y1=﹣x+b上,且△OPC的面積為3,求點P的坐標?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一批共享單車需要維修,維修后繼續(xù)投放騎用,現(xiàn)有甲、乙兩人做維修,甲每天維修16輛,乙每天維修的車輛比甲多8輛,甲單獨維修完成這批共享單車比乙單獨維修完多用20天,公司每天付甲80元維修費,付乙120元維修費.

1)問需要維修的這批共享單車共有多少輛?

2)在維修過程中,公司要派一名人員進行質(zhì)量監(jiān)督,公司負擔他每天10元補助費,現(xiàn)有三種維修方案:①由甲單獨維修;

②由乙單獨維修;

③甲、乙合作同時維修,你認為哪種方案最省錢,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要得到ABCD,只需要添加一個條件,這個條件不可以( )

A. 1=3 B. BBCD=180°

C. 2=4 D. DBAD=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩同學用一副撲克牌中牌面數(shù)字分別是3,4,5,6的4張牌做抽數(shù)字游戲,游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機抽取一張,抽得的數(shù)作為十位上的數(shù)字,抽出的牌不放回,然后將剩下的牌洗勻,再從中隨機抽取一張,抽得的數(shù)作為個位上的數(shù)字,這樣就得到一個兩位數(shù),若這個兩位數(shù)小于45,則甲獲勝,否則乙獲勝.你認為這個游戲公平嗎?請利用樹狀圖或列表法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:如圖1,如果四邊形ABCD滿足ABADCBCD,∠B=∠D90°,那么我們把這樣的四邊形叫做“完美箏形”.將一張如圖1所示的“完美箏形”紙片ABCD先折疊成如圖2所示形狀,再展開得到圖3,其中CECF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應點,點D′為點D的對應點,連接EB′,FD′相交于點O.

簡單應用:

(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是 ;

(2)當圖3中的∠BCD120°時,∠AEB′ ;

拓展提升:

(3)當圖2中的四邊形AECF為菱形時,對應圖3中的四邊形CD′OB′是否是“完美箏形”?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們通常用作差法比較代數(shù)式大。纾阂阎M=2x+3N=2x+1,比較MN的大。惹MN,若MN0,則MN;若MN0,則MN;若MN=0,則M=N,反之亦成立.本題中因為MN=2x+3(2x+1)=20,所以MN

1)如圖1是邊長為a的正方形,將正方形一邊不變,另一邊增加4,得到如圖2所示的新長方形,此長方形的面積為S1;將圖1中正方形邊長增加2得到如圖3所示的新正方形,此正方形的面積為S2.用含a的代數(shù)式表示S1=    ,S2=    (需要化簡).然后請用作差法比較S1S2大。

2)已知A=2a26a+1,B=a24a1,請你用作差法比較AB大。

3)若M=(a4)2,N=16(a6)2,且M=N,求(a4)(a6)的值.

查看答案和解析>>

同步練習冊答案