【題目】2018928日,重慶八中80周年校慶在渝北校區(qū)隆重舉行,學(xué)校總務(wù)處購(gòu)買(mǎi)了紅,黃,藍(lán)三種花卉裝扮出甲,乙,丙,丁四種造型,其中一個(gè)甲造型需要15盆紅花,10盆黃花,10盆藍(lán)花;一個(gè)乙造型需要5盆紅花,7盆黃花,6盆藍(lán)花;一個(gè)丙造型需要7盆紅花,8盆黃花,9盆藍(lán)花;一個(gè)丁造型需要6盆紅花,4盆黃花,4盆藍(lán)花,若一個(gè)甲造型售價(jià)1800元,利潤(rùn)率為20%,一個(gè)乙和一個(gè)丙造型一共成本和為1830元,且一盆紅花的利潤(rùn)率為25%,問(wèn)一個(gè)丁造型的利潤(rùn)率為_____

【答案】20%

【解析】

根據(jù)已知條件得到甲造型成本價(jià)=1800÷(1+20%=1500元,設(shè)一盆紅花的成本價(jià)為x元,根據(jù)題意列方程得到x=40,求出1盆黃花+1盆藍(lán)花的成本,1盆紅花的售價(jià),1盆黃花+1盆藍(lán)花的售價(jià),根據(jù)利潤(rùn)÷成本×100%=利潤(rùn)率即可得到結(jié)論.

解:∵甲造型售價(jià)1800元,利潤(rùn)率為20%

∴甲造型成本價(jià)=1800÷1+20%)=1500元,

設(shè)一盆紅花的成本價(jià)為x元,

根據(jù)題意得, ,

解得:x40

1盆黃花+1盆藍(lán)花的成本=元,

1盆紅花的售價(jià)=40×1+25%)=50元;

1盆黃花+1盆藍(lán)花的售價(jià)=元,

∴一個(gè)丁造型的利潤(rùn)率=

故答案為:20%

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)PQ同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/秒.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知yt的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5;;當(dāng)0t≤5時(shí),;當(dāng)秒時(shí),△ABE∽△QBP;其中正確的結(jié)論是( )

A. ①②③B. ②③C. ①③④D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面時(shí),水面寬.當(dāng)水面上升時(shí)達(dá)到警戒水位,此時(shí)拱橋內(nèi)的水面寬度是多少?

下面給出了解決這個(gè)問(wèn)題的兩種方法,請(qǐng)補(bǔ)充完整:

方法一:如圖1.以點(diǎn)為原點(diǎn),所在直線為軸,建立平面直角坐標(biāo)系,此時(shí)點(diǎn)的坐標(biāo)為_______,拋物線的項(xiàng)點(diǎn)坐標(biāo)為_______,可求這條拋物線所表示的二次函數(shù)解析式為_______.當(dāng)時(shí),求出此時(shí)自變量的取值,即可解決這個(gè)問(wèn)題.

方法二:如圖2,以拋物線頂點(diǎn)為原點(diǎn),對(duì)稱(chēng)軸為軸.建立平面直角坐標(biāo)系,這時(shí)這條拋物線所表示的二次函數(shù)的解析式為_______,當(dāng)水面達(dá)到警戒水位,即_______時(shí),求出此時(shí)自變量的取值為_______,從而得水面寬為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)、 點(diǎn)分別在線段和線段上, 平分

如圖1,求證:

如圖2,若.求證:

問(wèn)的條件下,如圖3 在線段上取一點(diǎn),使.過(guò)點(diǎn)于點(diǎn),作于點(diǎn),連接,交于點(diǎn),連接,交于點(diǎn),若,的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,完成(1),(2)兩題

數(shù)學(xué)課上,老師出示了這樣一道題:如圖1,在中,,,點(diǎn)上一點(diǎn),且滿足,上一點(diǎn),,延長(zhǎng),求的值.同學(xué)們經(jīng)過(guò)思考后,交流了自己的想法:

小明:通過(guò)觀察和度量,發(fā)現(xiàn)相等.

小偉:通過(guò)構(gòu)造全等三角形,經(jīng)過(guò)進(jìn)一步推理,就可以求出的值.

……

老師:把原題條件中的,改為其他條件不變(如圖2),也可以求出的值.

1)在圖1中,①求證:;②求出的值;

2)如圖2,若,直接寫(xiě)出的值(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,拋物線頂點(diǎn)為H(1,2).

(1)求拋物線的解析式;

(2)點(diǎn)P為直線AD上方拋物線的對(duì)稱(chēng)軸上一動(dòng)點(diǎn),連接PA,PD.當(dāng)SPAD=3,若在x軸上存在一動(dòng)點(diǎn)Q,使PQ+QB最小,求此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值;

(3)若點(diǎn)E為拋物線上的動(dòng)點(diǎn),點(diǎn)G,F(xiàn)為平面內(nèi)的點(diǎn),以BE為邊構(gòu)造以B,E,F(xiàn),G為頂點(diǎn)的正方形,當(dāng)頂點(diǎn)F或者G恰好落在y軸上時(shí),求點(diǎn)E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料:

如果函數(shù) yfx)滿足:對(duì)于自變量 x 的取值范圍內(nèi)的任意 x1,x2,

1)若 x1x2,都有 fx1)<fx2),則稱(chēng) fx)是增函數(shù);

2)若 x1x2,都有 fx1)>fx2),則稱(chēng) fx)是減函數(shù).

例題:證明函數(shù)fx)= x0)是減函數(shù).

證明:設(shè) 0x1x2,

fx1)﹣fx2)=

0x1x2

x2x10,x1x20

0.即 fx1)﹣fx2)>0

fx1)>fx2).

∴函數(shù) fx= x0)是減函數(shù).

根據(jù)以上材料,解答下面的問(wèn)題:

已知函數(shù)

f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=

1)計(jì)算:f(﹣3)= ,f(﹣4)= ;

2)猜想:函數(shù) 函數(shù)(填“增”或“減”);

3)請(qǐng)仿照例題證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與直線交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,已知A0,3),C30).(1)拋物線的解析式__;(2)設(shè)E為線段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EA以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止.若使點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少,則點(diǎn)E的坐標(biāo)__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC的邊長(zhǎng)為8,點(diǎn)PAB邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)AB不重合),直線l是經(jīng)過(guò)點(diǎn)P的一條直線,把△ABC沿直線l折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B’.

1)如圖1,當(dāng)PB=4時(shí),若點(diǎn)B’恰好在AC邊上,則AB’的長(zhǎng)度為_____;

2)如圖2,當(dāng)PB=5時(shí),若直線l//AC,則BB’的長(zhǎng)度為 ;

3)如圖3,點(diǎn)PAB邊上運(yùn)動(dòng)過(guò)程中,若直線l始終垂直于AC,△ACB’的面積是否變化?若變化,說(shuō)明理由;若不變化,求出面積;

4)當(dāng)PB=6時(shí),在直線l變化過(guò)程中,求△ACB’面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案