【題目】如圖,AC是ABCD的對(duì)角線,∠BAC=∠DAC.
(1)求證:AB=BC;
(2)若AB=2,AC=2,求ABCD的面積.
【答案】(1)詳見解析;(2)2.
【解析】
試題分析:(1)根據(jù)已知條件易證∠BAC=∠BCA,即可得出AB=BC;(2)連接BD交AC于O,易證四邊形ABCD是菱形,根據(jù)菱形的性質(zhì)可得AC⊥BD,OA=OC=AC=,OB=OD=BD,根據(jù)勾股定理求出OB的長(zhǎng),即可得BD的長(zhǎng),利用ABCD的面積=ACBD,即可求得答案.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAC=∠BCA,
∵∠BAC=∠DAC,
∴∠BAC=∠BCA,
∴AB=BC;
(2)解:連接BD交AC于O,如圖所示:
∵四邊形ABCD是平行四邊形,AB=BC,
∴四邊形ABCD是菱形,
∴AC⊥BD,OA=OC=AC=,OB=OD=BD,
∴OB===1,
∴BD=2OB=2,
∴ABCD的面積=ACBD=×2×2=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)三角形的高、中線和角平分線概念理解錯(cuò)誤的是( )
A.直角三角形只有一條高
B.鈍角三角形有兩條高在三角形外部
C.銳角三角形的三條高、三條中線、三條角平分線分別交于一點(diǎn)
D.任意三角形都有三條高、三條中線、三條角平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016湖北襄陽(yáng)第24題)
如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)探究線段EG,GF,AF之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若AG=6,EG=2,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(-3)+(-2);
(2)-5 + 6 - 3;
(3)
(4)32+42-52
(5)
(6)
(7) )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,把△EFP放置在菱形ABCD中,使得頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>.
⑴求∠EPF的大;
⑵若AP=8,求AE+AF的值;
⑶若△EFP的三個(gè)頂點(diǎn)E,F,P分別在線段AB,AD,AC上運(yùn)動(dòng),請(qǐng)直接寫出AP長(zhǎng)的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P(﹣3,5)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)是( )
A.(3,-5)
B.(3,5)
C.(5,-3)
D.(-3,-5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y= x+b,分別交x軸,y軸于點(diǎn)A、C,點(diǎn)P是直線AC與雙曲線y=在第一象限內(nèi)的交點(diǎn),過點(diǎn)P作PB⊥x軸于點(diǎn)B,若OB=2,PB=3.
(1)填空:k= ;
(2)求△ABC的面積;
(3)求在第一象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)的值小于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是 .
(2)連接NB,若AB=8cm,△NBC的周長(zhǎng)是14cm.
①求BC的長(zhǎng);
②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長(zhǎng)值最?若存在,標(biāo)出點(diǎn)P的位置并求△PBC的周長(zhǎng)最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com