已知|2x-24|+(3x-y-m)2=0,若y<0,則m的取值范圍是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、已知:|2x-24|+(3x-y-k)2=0,若y<0,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)[(x+y)2-y(2x+y)-8x]÷2x;
(2)已知:m-n=4,m2-n2=24,求(m+n)3的值.
(3)已知-2x3m+1y2n與7xn-6y-3-m的積與x4y是同類項(xiàng),求m2+n的值.
(4)先化簡,再求值:(-2a4x2+4a3x3-
3
4
a2x4)÷(-a2x2),其中a=
1
2
,x=-4.
(5)分解因式:
①(x+y)2-9y2
②10b(x-y)2-5a(y-x)2;
③(ab+b)2-(a+1)2;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1看作一個(gè)整體,設(shè)x2-1=y,則原方程可化為y2-5y+4=0,解得y1=1,y2=4.
當(dāng)y1=1時(shí),x2-1=1,∴x=±
2
;當(dāng)y2=4時(shí),x2-1=4,∴x=±
5

因此原方程的解為:x1=
2
x2=-
2
,x3=
5
x4=-
5

(1)已知方程
1
x2-2x
=x2-2x-3
,如果設(shè)x2-2x=y,那么原方程可化為
 
(寫成關(guān)于y的一元二次方程的一般形式).
(2)根據(jù)閱讀材料,解方程:x(x+3)(x2+3x+2)=24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知
2
x
+
2
y
=
24
,則
x
y(x-y)
-
y
x(x-y)
的值為(  )
A、2
6
B、3
2
C、
6
D、
11

查看答案和解析>>

同步練習(xí)冊(cè)答案