閱讀下列材料并解決有關(guān)問(wèn)題:我們知道:|x|=
-x(當(dāng)x<0時(shí))
0(當(dāng)x=0時(shí))
x(當(dāng)x>0時(shí))
,現(xiàn)在我們可以用這一結(jié)論來(lái)解含有絕對(duì)值的方程.例如,解方程|x+1|+|2x-3|=8時(shí),可令x+1=0和2x-3=0,分別求得x=-1和
3
2
,(稱(chēng)-1和
3
2
分別為|x+1|和|2x-3|的零點(diǎn)值),在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=-1和可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:①x<-1②-1≤x<
3
2
x≥
3
2
,從而解方程|x+1|+|2x-3|=8可分以下三種情況:
①當(dāng)x<-1時(shí),原方程可化為-(x+1)-(2x-3)=8,解得x=-2.
②當(dāng)-1≤x<
3
2
時(shí),原方程可化為(x+1)-(2x-3)=8,解得x=-4,但不符合-1≤x<
3
2
,故舍去.
③當(dāng)x≥
3
2
時(shí),原方程可化為(x+1)+(2x-3)=8,解得x=
10
3

綜上所述,方程|x+1|+|2x-3|=8的解為,x=-2和x=
10
3

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:
(1)分別求出|x+2|和|3x-1|的零點(diǎn)值.
(2)解方程|x+2|+|3x-1|=9.
分析:(1)分別求方程x+2=0,3x-1=0的解即可;
(2)分為三個(gè)階段:①當(dāng)x<-2時(shí),方程化為:-(x+2)-(3x-1)=9,求出方程的解即可;②當(dāng)-2≤x<
1
3
時(shí),方程化為(x+2)-(3x-1)=9,求出方程的解即可;③當(dāng)x≥
1
3
時(shí),方程化為(x+2)+(3x-1)=9,求出方程的解即可.
解答:解:(1)令x+2=0,
解得:x=-2,
3x-1=0  
解得:x=
1
3
,
∴|x+2|的零點(diǎn)值為-2.|3x-1|的零點(diǎn)值為
1
3
;

(2)解:①∵當(dāng)x<-2時(shí),-(x+2)-(3x-1)=9
∴x=-
5
2

②∵當(dāng)-2≤x<
1
3
時(shí),(x+2)-(3x-1)=9,
∴x=-3,但不符合-2≤x<
1
3
,故舍去.
③∵當(dāng)x≥
1
3
時(shí),(x+2)+(3x-1)=9,
∴x=2
∴方程|x+2|+|3x-1|=9的解為x1=-
5
2
,x2=2.
點(diǎn)評(píng):本題考查了含絕對(duì)值符號(hào)的一元一次方程和絕對(duì)值的應(yīng)用,注意:求此類(lèi)方程時(shí),先求出零點(diǎn)值,再看看分成幾個(gè)階段,求出每一階段的方程的解即可,注意:一定要看看求出的數(shù)是否滿(mǎn)足x的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:現(xiàn)有5個(gè)邊長(zhǎng)為1的正方形,排列形式如圖①,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:畫(huà)出分割線(xiàn)并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線(xiàn)畫(huà)出拼接成的新正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長(zhǎng)為x(x>0),依題意,割補(bǔ)前后圖形的面積相等,有x2=5,解得x=
5
,由此可知新正方形得邊長(zhǎng)等于兩個(gè)小正方形組成得矩形對(duì)角線(xiàn)得長(zhǎng),于是,畫(huà)出如圖②所示的分割線(xiàn),拼出如圖③所示的新正方形.精英家教網(wǎng)
請(qǐng)你參考小東同學(xué)的做法,解決如下問(wèn)題:
現(xiàn)有10個(gè)邊長(zhǎng)為1的正方形,排列形式如圖④,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:在圖④中畫(huà)出分割線(xiàn),并在圖⑤的正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線(xiàn)畫(huà)出拼接成的新正方形.(說(shuō)明:直接畫(huà)出圖形,不要求寫(xiě)分析過(guò)程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,并解決后面的問(wèn)題.
在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c.過(guò)A作AD⊥BC于D(如圖),則sinB=
AD
c
,sinC=
AD
b
,即AD=csi精英家教網(wǎng)nB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC

同理有
c
sinC
=
a
sinA
,
a
sinA
=
b
sinB

所以
a
sinA
=
b
sinB
=
c
sinC
…(*)
即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等.
(1)在銳角三角形中,若已知三個(gè)元素a、b、∠A,運(yùn)用上述結(jié)論(*)和有關(guān)定理就可以
求出其余三個(gè)未知元素c、∠B、∠C,請(qǐng)你按照下列步驟填空,完成求解過(guò)程:
第一步:由條件a、b、∠A
用關(guān)系式
 
求出
∠B;
第二步:由條件∠A、∠B.
用關(guān)系式
 
求出
∠C;
第三步:由條件.
 
用關(guān)系式
 
求出
c.
(2)一貨貨輪在C處測(cè)得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以28.4海里/時(shí)的速度按北偏東45°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得燈塔A在貨輪的北偏西70°的方向上(如圖),求此時(shí)貨輪距燈塔A的距離AB(結(jié)果精確精英家教網(wǎng)到0.1.參考數(shù)據(jù):sin40°=0.643,sin65°=0.90 6,sin70°=0.940,sin75°=0.966).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,并解決后面給出的問(wèn)題
例.給定二次函數(shù)y=(x-1)2+1,當(dāng)t≤x≤t+1時(shí),求y的函數(shù)值的最小值.
解:函數(shù)y=(x-1)2+1,其對(duì)稱(chēng)軸方程為x=1,頂點(diǎn)坐標(biāo)為(1,1),圖象開(kāi)口向上.下面分類(lèi)討論:

(1)如圖1所示,若頂點(diǎn)橫坐標(biāo)在范圍t≤x≤t+1左側(cè)時(shí),即有1<t.此時(shí)y隨x的增大而增大,當(dāng)x=t時(shí),函數(shù)取得最小值,y最小值=(t-1)2+1
(2)如圖2所示,若頂點(diǎn)橫坐標(biāo)在范圍t≤x≤t+1內(nèi)時(shí),即有t≤1≤t+1,解這個(gè)不等式,即0≤t≤1.此時(shí)當(dāng)x=1時(shí),函數(shù)取得最小值,y最小值=1;
(3)如圖3所示,若頂點(diǎn)橫坐標(biāo)在范圍t≤x≤t+1右側(cè)時(shí),有t+1<1,解不等式即得t<0.此時(shí)Y隨X的增大而減小,當(dāng)x=t+1時(shí),函數(shù)取得最小值,y最小值=t2+1
綜上討論,當(dāng)1<t時(shí),函數(shù)取得最小值,y最小值=(t-1)2+1
此時(shí)當(dāng)0≤t≤1時(shí),函數(shù)取得最小值,y最小值=1.
當(dāng)t<0時(shí),函數(shù)取得最小值,y最小值=t2+1
根據(jù)上述材料,完成下列問(wèn)題:
問(wèn)題:求函數(shù)y=x2+2x+3在t≤x≤t+2時(shí)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料?:
問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=
3
,PC=1.求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2).連接PP′,可得△P′PB是等邊三角形(可證),而△PP′A又是直角三角形(由勾股定理的逆定理可證).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.進(jìn)而把AB放在Rt△APB(可證得)中,用勾股定理求出等邊△ABC的邊長(zhǎng)為
7
.問(wèn)題得到解決.?
[思路分析]首先仔細(xì)閱讀材料,問(wèn)題中小明的做法總結(jié)起來(lái)就是通過(guò)旋轉(zhuǎn)固定的角度將已知條件放在同一個(gè)(組)圖形中進(jìn)行研究.旋轉(zhuǎn)60度以后BP就成了BP′,PC成了P′A,借助等量關(guān)系BP′=PP′,于是△APP′就可以計(jì)算了.
解決問(wèn)題:
請(qǐng)你參考李明同學(xué)旋轉(zhuǎn)的思路,探究并解決下列問(wèn)題:
如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=
5
,BP=
2
,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:如圖1,在正方形ABCD和正方形CEFG中,點(diǎn)B、C、E在同一條直線(xiàn)上,M是線(xiàn)段AF的中點(diǎn),連接DM,MG.探究線(xiàn)段DM與MG數(shù)量與位置有何關(guān)系.

小聰同學(xué)的思路是:延長(zhǎng)DM交GF于H,構(gòu)造全等三角形,經(jīng)過(guò)推理使問(wèn)題得到解決.
請(qǐng)你參考小聰同學(xué)的思路,探究并解決下列問(wèn)題:
(1)直接寫(xiě)出上面問(wèn)題中線(xiàn)段DM與MG數(shù)量與位置有何關(guān)系
DM=MG且DM⊥MG
DM=MG且DM⊥MG
;
(2)將圖1中的正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使正方形CEFG對(duì)角線(xiàn)CF恰好與正方形ABCD的邊BC在同一條直線(xiàn)上,原問(wèn)題中的其他條件不變(如圖2).你在(1)中得到的兩個(gè)結(jié)論是否發(fā)生變化?寫(xiě)出你的猜想并加以證明.
(3)如圖3,將正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度,原問(wèn)題中的其他條件不變,寫(xiě)出你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案