【題目】將兩塊全等的含30°角的直角三角板按圖1的方式放置,已知∠BAC=B1A1C=30°,AB=2BC.

(1)固定三角板A1B1C,然后將三角板ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)至圖2的位置,ABA1C、A1B1分別交于點(diǎn)D、E,ACA1B1交于點(diǎn)F.

①填空:當(dāng)旋轉(zhuǎn)角等于20°時(shí),∠BCB1=   度;

②當(dāng)旋轉(zhuǎn)角等于多少度時(shí),ABA1B1垂直?請(qǐng)說明理由.

(2)將圖2中的三角板ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)至圖3的位置,使ABCB1,ABA1C交于點(diǎn)D,試說明A1D=CD.

【答案】(1)①160°,②30°;(2)證明見解析.

【解析】分析:(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得再根據(jù)直角三角形兩銳角互余求出,然后根據(jù)進(jìn)行計(jì)算即可得解;
②根據(jù)直角三角形兩銳角互余求出,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出,即為旋轉(zhuǎn)角的度數(shù);
(2)根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半可得根據(jù)旋轉(zhuǎn)的性質(zhì)可得然后求出解即可.

詳解:(1)①由旋轉(zhuǎn)的性質(zhì)得,

②∵AB

∴旋轉(zhuǎn)角為;

(2)ABCB1

又∵由旋轉(zhuǎn)的性質(zhì)得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則反比例函數(shù) 與一次函數(shù)y=bx+c在同一坐標(biāo)系中的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)Ax軸上,點(diǎn)Cy軸上,A點(diǎn)坐標(biāo)為(10, 0),C點(diǎn)坐標(biāo)為(0, 6),將邊BC折疊,使點(diǎn)B落在邊OA上的點(diǎn)D處,求線段EA 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、c在數(shù)軸上的位置如圖所示,則:

(1)“<、>、=”填空:a____0,b____0,c_____0;

(2)“<、>、=”填空:﹣a____0,a﹣b____0,c﹣a____0;

(3)化簡:|﹣a|﹣|a﹣b|+|c﹣a|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(
A.a>0
B.3是方程ax2+bx+c=0的一個(gè)根
C.a+b+c=0
D.當(dāng)x<1時(shí),y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 m≥2,n≥2,且 m、n 均為正整數(shù),如果將 mn 進(jìn)行如圖所示的分解,那么下列四個(gè)敘述中正確的有(

①在 25 分解結(jié)果是 1517兩個(gè)數(shù)

②在 42 分解結(jié)果中最大的數(shù)是9.

③若 m3 分解結(jié)果中最小的數(shù)是 23,則 m=5.

④若 3n 分解結(jié)果中最小的數(shù)是 79,則 n=5.

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC放置在第一象限內(nèi),頂點(diǎn)Ax軸上,若頂點(diǎn)B的坐標(biāo)是(4,3),(1)請(qǐng)求出菱形邊長OA的長度.

(2)反比例函數(shù)經(jīng)過點(diǎn)C,請(qǐng)求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,DE∥BC,AD2=AEAC.求證:
(1)△BCD∽△CDE;
(2)

查看答案和解析>>

同步練習(xí)冊答案